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Abstract

Deep learning-based medical image processing plays a significant
role in modern computer-aided diagnosis, which facilitates doctors
in various disease analysis. However, most researchers focus on the
accuracy of medical image classification tasks with ever-increasing
model size and the number of parameters but overlook the high
diagnostic costs and model efficiency. To reduce such costs and
broaden the application scenarios, a low-cost and efficient medical
image classification is imperative. To achieve this goal, this paper de-
signs a lightweight model, named Dense Depthwise Separable Net-
work (DDSNet), which combines the merits of Dense Convolution
Network and Depthwise Separable Convolution, rendering a low-
cost and efficient medical imaging. Moreover, a quantization-based
method is invented to deploy the proposed model on real-world
IoT devices by converting the original model to an integer-type
model while maintaining its classification performance. Extensive
experiments are conducted on four cancer image datasets on the
IoT device, showing the promising performance of this proposed
method against 5 baseline models, including data visualization and
interoperability aspects. Notably, compared to DenseNet, the pro-
posed model is about 32X smaller and 5x faster after quantization,
with a competitive classification accuracy preserved. Our code is
available at https://github.com/OldDreamInWind/DDSNet.
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1 Introduction

Recently, various deep learning models have been introduced for
computer vision, showing remarkable success across different do-
mains. For instance, the classic LeNet [15] demonstrated signifi-
cant potential in document recognition. The VGG [22] introduced
a very deep convolutional network method that excelled in the
ILSVRC-2012 dataset. ResNet [4] achieved state-of-the-art perfor-
mance on the ImageNet dataset with its innovative residual net-
works. DenseNet [6] approaches to image classification through
dense connections showcased high performance while requiring
less memory and computational resources. These different meth-
ods further promote the development of deep learning in medical
image diagnosis. Unlike traditional medical image processing meth-
ods that depend on manually designing feature extraction, such
as Canny or HOG, deep learning-based methods provide an end-
to-end diagnosis paradigm, using automated and efficient feature
extraction and achieving outperforming performance. On top of
that, many researchers [8, 12, 27, 33] have tried to apply deep learn-
ing methods to medical images and gotten exciting results.

However, along with these advancements, deep learning models
have become more complex, which requires high computation costs
and more energy consumption. This hinders, to some extent, the
popularization of related technologies to broader application sce-
narios. For example, Sitaula et. al. [23] utilized VGG-16 to classify
the COVID-19 chest X-ray image, and Wu et. al. [29] combined
Transformer and CNN on medical image classification tasks, both
achieved high performance. These complex models require several
gigabytes of space to store and run, which is hard to apply on many
medical hardware with limited computation power and storage.
Moreover, depending on the slice size, a single H&E-stained histo-
logical image from a patient may consist of thousands of sub-images
that require analysis [16]. Consequently, enhancing the detection
efficiency for each individual sub-image can lead to a significant
cumulative improvement in the overall diagnostic process. From
this perspective, reducing the parameters and size of the models
and improving their operating efficiency should be a pressing con-
cern, so that these methods and services can be more accessible
and more general users can get benefits from them.

In this paper, we focus specifically on improving the efficiency
of classification tasks in cancer images using deep neural networks
with preserved classification accuracy. Our proposed method Dense
Depthwise Separable Network (DDSNet) is inspired by Dense Con-
volution Networks (DenseNet) and Depthwise Separable Convolu-
tion (D-S Conv) that can reach the balance between performance
and computational efficiency. Furthermore, we incorporate quan-
tization techniques to transform the original float-number model
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into an integer-number model by optimizing the sensitive quanti-
zation scale parameter. Additionally, the quantized integer-number
model is deployed on real-world IoT devices with limited computa-
tional resources for realistic environment testing. Our approach has
demonstrated significant improvements on resource-limited devices
in benchmarks for cancer image classification, such as Gastrointesti-
nal Cancer (GC) [10, 11], PatchCamelyon (PCam) [2, 26] and other
datasets. Moreover, we enhance the interpretability of our model
through visual analysis, revealing the underlying decision-making
processes of the deep neural networks. The main contributions of
our paper are summarized as follows:

e We propose a lightweight model DDSNet with much fewer
parameters and a smaller model size. It combines dense con-
volution network and depthwise separable convolution layer,
which is fast and effective in cancer image classification
tasks.

e We utilize a quantization algorithm to scale the trained model
and deploy the quantized model on real-world IoT devices,
preserving competitive accuracy.

e We apply the visualization method to illustrate the classifica-
tion boundary and analyze the model interpretability on top
of model performance, which provides insight for domain
experts to understand the deep learning-based solution.

The rest of this paper is organized as follows. In Section 2, some
existing literature is reviewed based on their common advantages
and weaknesses. We introduce the proposed method of this paper
in Section 3 and conduct the performance analysis in Section 4.
Finally, this paper is concluded in Section 5.

2 Related Work
2.1 Deep Neural Network in Cancer Image

Cancer diagnosis has seen rapid development, powered by the ad-
vancement of deep learning technology. These new technologies
provide promising strategies for cancer image classification and
detection with high accuracy. For instance, Sarwinda et. al. [21] use
ResNet to detect colorectal cancer with a classification accuracy
of above 80%. Gao et. al. [3] utilize 3D-CNN in lung nodule detec-
tion, which improves the performance of this special task. Other
than image classification tasks, deep neural networks also work
well on segmentation tasks for tumor/cancer images. Milletari et.
al. [19] use V-net for volumetric (3D) image segmentation, which
has proven effectiveness in segmenting tumors from surrounding
tissues in 3D MRI and CT scans. Huang et. al. [7] use UNet 3+
for medical image segmentation task. Lou et. al. [18] rethink the
architecture of UNet [30, 31] and optimize the convolution block
with a dual channel to improve the efficiency of the segmentation
task. As seen, using neural network-related learning algorithms to
extract image features and classify them can effectively and conve-
niently improve the accuracy of classification, to assist doctors in
the diagnosis of cancer.

However, these methods lack efficiency, due to the large number
of parameters, and thus pose issues in deployment on resource-
limited medical devices. Such challenges inspire the current trends
in reducing computational costs for deployment on constrained
environments and the advanced models in the precise analysis and
diagnosis of cancer through medical imaging.
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2.2 Lightweight Neural Network

Due to the large memory and computation requirements of deep
neural networks, model lightweight has become a significant re-
search direction. Inception v2 [24] rethinks its predecessor and op-
timizes the inception block, followed by Inception v3 that changes
to the larger convolution kernel to expand the receptive field. More-
over, SqueezeNet [9] designs squeeze layer and expand layer to
reduce the parameters of the network model, which makes the
model more efficient. MobileNet [5] adds depthwise separable con-
volution to its model architecture and can adjust the model by width
multiplier and resolution multiplier.

On the other hand, ShuffleNet [34] employs a channel shuffle
operation that allows for the effective use of group convolutions,
reducing the number of parameters while maintaining competitive
performance on visual recognition tasks. EfficientNet [25] system-
atically scales all dimensions of the network with a set compound
coefficient, achieving state-of-the-art accuracy with significantly
fewer parameters and lower computational cost.

2.3 Deep Neural Network Quantization

Model quantization is a technique commonly used to reduce the size
of a deep learning model and speed up inference time, particularly
beneficial for deployment on IoT devices with limited computational
resources. Park et. al. [20] presented a novel value-aware quanti-
zation while separately handling a small amount of large data in
high precision. Kluska et.al. [13] performed a comprehensive study
on post-training quantization that quantizes every single layer to
the smallest bit width. Then, Liu et. al. [17] proposed Nonuniform-
to-Uniform Quantization (N2UQ), which can maintain the strong
representation ability of nonuniform methods while being efficient.
Xiong et al. [32] designed a quantized federated learning method
for distributed learning scenario. Yet, those methods are theoretical-
oriented without considering the realistic deployment. Instead, in
this work, we propose a quantization-based method and implement
it on real IoT devices for comparative performance evaluation.

3 Method

3.1 Preliminaries and Notations

In our method, we formulate the cancer image classification prob-
lem as follows. We define the training dataset as D; = {x;, yi}fil,
consisting of inputs cancer images x; € X and correct class labels
y; € Y. For the classification model, it is formulated as My : X = Y,
where 0 is the model parameters for trained on dataset D;, which is
a float type model. Moreover, in order to deploy this model on the
IoT device, we use the quantization function F(0, A, Nj), by search-
ing for a suitable scale index A, which quantizes float parameters
of the model 0 as integer parameters. The quantized model ng is

the final model to be deployed on the real device.

3.2 Methodology

As shown in Fig. 1, the proposed DDSNet framework contains four
parts. In part 1, the Dense Convolution Network is used as the base
architecture for classification. In part 2, we use depthwise separable
convolution as the lightweight convolution algorithm, which re-
places the convolution layer in DenseNet for efficient training and
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Figure 1: The DDSNet framework of this paper, including
4 parts: Dense Convolution Network, Depthwise Separable
Convolution, Quantization of Model Parameters, and Model
Deployment.

inference. For part 3, we search the scale index to apply the model
quantization algorithm. Finally, we deploy the quantized model
to an IoT device, which provides efficient and effective utility for
medical imaging purposes.

3.2.1 Dense Convolution Network. The Dense Convolution Net-
work (DenseNet) architecture introduces a unique approach to deep
learning models, primarily designed to enhance the propagation
and reuse of features within the network. This is achieved through
its dense connectivity pattern, a fundamental disparity from tradi-
tional convolutional neural network (CNN) designs. The design of
DenseNet addresses several issues prevalent in deep networks. By
ensuring that each layer receives input from all preceding layers,
the network facilitates feature reuse, which significantly mitigates
the vanishing-gradient problem. Additionally, this characteristic
reduces the model’s susceptibility to overfitting and diminishes the
total number of parameters, leading to a more robust model.
Generally, the ResNet model uses a shortcut connection to do the
residual learning, and it can be described as a formula like follows:

o =Hj(oj_1) + o011, (1)

where oj is the output feature map of the [-th layer and H; means a
convolution block of layer I/, which can include different operations
such as Convolution, Pooling, Batch Norm, or Activation Unit.

In the DenseNet model, the significant difference from other
CNN models is the dense connections pattern from any layer to all
subsequent layers, which can improve the information flow among
different layers. In this way, the I-th layer accepts the feature maps
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Figure 2: The traditional convolution (top) vs. depthwise sep-
arable convolution (bottom)

from all preceding layers, which is denoted as follows:
01=Hl(00$01®"'€901—1)’ ()

where 09 ® 01 @ - - - ® 0;_; denotes the concatenation of the feature
maps from layers 0,1,- - -,/ — 1.

Then, to train this cancer image classification model, we use
Cross Entropy Loss to optimize the parameters of the DenseNet
model as follows:

L(D¢:0) = Lee(Mp(x), y:0) ®)

where My (x) is the output of our model with input x, y is the target
label, and Lc is the cross entropy of My (x) and y.

3.2.2 Depthwise Separable Convolution. To further reduce the pa-
rameter of the neural network model and improve the speed of
inference time, we combine the ideas of separable convolution with
the DenseNet backbone. Compared with traditional convolution,
separable convolution separates the convolution process into depth-
wise convolution and point-wise convolution as denoted by Fig. 2.
More generally, we consider such a convolution process, where
the convolution kernel has the same dimension Dg of height and
width and the input image has the same dimension Dy of height
and width. Then the parameters of traditional convolution Cy is
denoted as follows:

Ct =Dk X D X I X O¢ X Dy X Dy, (4)

where I and O, are the channels of input and output.

To reduce the parameters of traditional convolution, our Depth-
wise Separable Convolution (D-S Conv) considers splitting the
process into two steps: depth-wise convolution and point-wise con-
volution. The depth-wise convolution can be viewed as feature
filters for each input channel and then produce intermediate fea-
ture maps. And the point-wise convolution is used to merge all
intermediate feature maps to the final feature maps. This two-step
convolution can reduce the parameters of the entire model.
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The amount of parameters for separable convolution can be
calculated as follows. Firstly, depth-wise convolution defines the
convolution process at the channel level. As shown in Fig. 2, the
colored images have 3 channels as RGB and depth-wise convolution
generates the intermediate feature maps for each channel. Assume
that the number of input channels is I, the parameters of depth-
wise convolution Cy is denoted as follows:

Cyg = Dg X Dg X I X Dx X Dy . (5)

Secondly, the point-wise convolution defines convolution using
1 X 1 convolution kernel and filters the input intermediate feature
maps for O, output channels. In this way, the point-wise convo-
lution combines the intermediate feature maps from depth-wise
convolution and adjusts the feature map dimension from the in-
put channel to the output channel. The parameters of point-wise
convolution Cp, are represented as follows:

Cp =1Ic X O¢ X Dy X Dy . 6)

We can compare the ratio between traditional convolution and
depthwise separable convolution based on the above amount of
parameters. The ratio of their parameters reduction is calculated as
follows:

Dg X Dk X I¢ X Dx X Dy + I X O¢ X Dy X Dy
Dk X Dg X I X O¢ X Dy X Dy
_GatGp 1 1
= = 5 -
Ce Oc DK

™)

The ratio indicates that we can shrink the number of parameters
for the model by D12< times via the depthwise separable convolution
and thus improve the efficiency of the deep learning model during
the training and inference process.

3.2.3 Quantization of Model Parameters. After the model size re-
duction via DS-conv, the next step is to deploy our trained model
to the IoT device. We need to quantize convolution neural network
parameters for inference with integer weights and activate func-
tions. However, during the process of model quantization, the type
changes from float to integer will inevitably bring performance
loss to the model. Therefore, we have to deploy a suitable method
for searching optimal quantization scales to minimize the accuracy
drop.

The quantization algorithm contains two steps: (i) transform-
ing parameters from float type to integer type; and (ii) restricting
the parameters to the suitable area. As introduced in [14], a gen-
eral quantization uses scale (A) and zero-point bias (z) to define
the transformation process. To simplify this process, symmetric
quantization is a potential affine quantization we can start with. By
restricting zero-point bias to 0, entire quantization process can be
denoted as follows:

clamp(—%, % -1, round(%))

clamp(0, Ny — 1, round(%))

F(0,AN)) = { ?fsigned ,
if unsigned

®
where clamp(b;, by, n) means the clamp operation on value n with
lower bound b; and upper bound b,,. Here, Nj is the range bound
of a given data type, e.g., N; = 256 for an 8-bit integer type. 0 is the
origin model parameter, A is the quantization scale and round(x)
means rounding operation.
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Next, the problem is to search for an optimal scale parameter
A that can minimize the accuracy drop caused by quantization.
We use a two-step search algorithm: (i) a coarse-grained search by
KL divergence; and (ii) a fine-grained search by cosine similarity.
Particularly, we select a subset of the training dataset as calibration
dataset D, and all subsequent optimizations are based on the cali-
bration dataset. In the first step, we focus on the activation layer
output. For each potential scale, we generate a potential weight
parameter 9,'], and infer the model with this parameter. We collect
the histogram of activation layer output values H, by the original
model parameters § and Hy by the quantized model parameters
9;. These histograms store the distribution of activation values
in many discrete bins. And Eq. (9) shows how to calculate the KL
divergence and how to optimize the optimal scale parameter A by
minimizing the KL divergence.

min Dk, (P, Q) = };{P(h) log (%) 9)

where h is the number of activation values in the bin of histograms,
P(h) is the discrete probability distribution of H,, and Q(h) is the
discrete probability distribution of Hy.

In the second step, we fine-grain the scale A based on the previ-
ous step’s output by minimizing the cosine similarity between the
convolution layer output and activation layer output of the original
model and the quantized model. As introduced in EasyQuant [28],
we set the scale A from KL divergence as the start scale, and search
its neighborhood. For each potential scale, we generate a potential
weight 0; and infer the model with this weight parameter. Accord-
ingly, the output of the original model parameter 6 is denoted as
I,, and the output of the quantized model parameter 9,’1 is I5. The
following Eq. (10) shows how to compute the cosine similarity and
maximize the cosine similarity to find the best A:

I I
olllq] -

mAax cos(Ip, Iq) = (10)
After the two-step scale search algorithm, we can find the empir-
ically optimal scale A to minimize the accuracy drop caused by
model quantization.

3.24 Model Deployment. The last part of our method is more
about the software engineer, which utilizes a model inference en-
gine on the IoT devices. In this part, we deploy our model to the
develop board, named Maix-III, which is shown in Fig. 3(a). This is
an IoT terminal device equipped with the AX620 chip, an AI SoC
chip with a NPU that has a computing power of 3.6TOPs@INTS8,
a high energy efficiency ratio, and low power consumption. The
device also integrates a quad-core Cortex A7 @ 1Ghz CPU with a
floating-point operation unit and supports NEON, which can build
an Al operating environment at a lower cost.

Then we use the Pulsar [1] to apply the quantized model in-
ference. Pulsar is an efficient tool to deploy models on the device
with AX chips. The entire inference process is built based on C++
code, which will return the classification results of given medical
image data. Finally, we developed a website for terminal users to
easily use the classification system just through simple UI to get
the classification results, as shown in Fig. 3(b).
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Figure 3: The Maix-III device with AX-620 chip and the de-
veloped system.

4 Experimental Results
4.1 Experiment Settings

Datasets. We apply our model on Gastrointestinal Cancer (GC),
PatchCamelyon (PCam), Skin Cancer (SC) and Cervical Cancer
(SipakMed) datasets.

1) GC: It consists of 11,977 histological images (512x512) in gas-
trointestinal cancer, which has six classes, such as adipose tissue
(ADI), mucus (MUC), stroma (STR), muscle (MUS), colorectal cancer
epithelial tissue (TUM), and stomach cancer epithelial tissue (STU).
2) PCam: It consists of 327,680 color images (96x96) extracted
from histopathologic scans of lymph node sections. Each image
is annotated with a binary label (tumor or normal) indicating the
presence of metastatic tissue.

3) SC: It consists of 10,015 dermatoscopic images (600x450) with
seven diagnostic categories: Actinic keratoses and intraepithelial
carcinoma (akiec), basal cell carcinoma (bcc), benign keratosis-like
lesions (bkl), dermatofibroma (df), melanoma (mel), melanocytic
nevi (nv) and vascular lesions (vasc).

4) SipakMed: It consists of 4,049 images of isolated cells of cervical
cancer. The cell images are divided into five categories: dyskeratotic
(DYS), koilocytotic (KOI), metaplastic (MET), parabasal (PAR) and
superficial-intermediate (SUP).

Baselines. VGG, ResNet, Inception, SqueezeNet, and DenseNet
are used as baselines to evaluate our method.

Training setting. These models are trained on an NVIDIA A30
GPU using PyTorch version 2.2.2. We use a batch size of 32 and train
the models for 50 epochs. The adopted loss function is cross-entropy
loss, and the optimizer is SGD with a suitable initial learning rate
for different models, and momentum is 0.9.

4.2 Model Parameters Comparison

In order to demonstrate the performance in terms of model effi-
ciency, we compared different models in various facets including
the number of parameters, the number of operations, and the size
of the model itself. Table 1 summarizes the model parameters differ-
ence of different deep learning models based on specific input image
size. Due to the model limitation, the image size for Inception-V3
is 299%299. And for other models, the input image size is 224x224.
The Params column lists the total number of trainable parameters
in millions (M) for each model. Parameters are indicative of the
model’s potential capacity to learn from data. The VGG model
has 128.79 M parameters, which is the largest among all models’
parameters. Our method shows the smallest number of parameters

SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 1: Model parameters comparison with specific input
image size.

Method Params (M) Flops (G) Size (MB)
VGG 128.79 7.64 491.32
ResNet 11.18 1.82 42.72
SqueezeNet 0.73 0.75 2.84
Inception-v3 24.36 5.75 93.26
DenseNet 6.96 2.90 27.13
DDSNet 0.19 0.43 0.84

with only 0.19 M, suggesting it is the most compact model in terms
of trainable parameters.

The Floating point operations per second (Flops) are given in
Gigaflops and represent the number of operations needed for a
single forward pass, which is usually a measure of computational
costs. Again, our method has the lowest computational complexity
at 0.43 G Flops, implying it requires the least computation during
the inference stage.

The size of the model in megabytes (MB) reflects the amount of
memory needed to store the model. The model size of DenseNet is
about 27.13 MB, while our method is only 0.84 MB, which is about
32 times smaller model size than DenseNet, indicating it is likely
the most storage-efficient and possibly suitable for deployment in
environments with limited storage capacity, such as small IoT or
edge devices.

From this table, it’s evident that our method is designed to be
significantly more lightweight than traditional heavy-weight mod-
els like VGG, ResNet, Inception-v3, and DenseNet. This speaks out
that when our model can offer competitive accuracy, it is far more
efficient, requiring fewer computational resources and less memory.

4.3 Classification Performance Comparison

Table 2 presents the classification performance of various deep
learning models on four datasets. Here we only analyze the ac-
curacy performance, and more details can be found in the table.
Our proposed method shows the best accuracy of 99.6% on the
GC dataset and 97.1% on the SipakMed dataset. On the PCam and
SC dataset, the accuracy of our model is also competitively high,
with 89.6% and 80.6% accuracy. DenseNet model performs very
well on several datasets. This model gets the best accuracy on GC
and SC. The results suggest that DenseNet is effective at capturing
relevant features from all datasets for classification. ResNet shows
a strong performance with 99.4% accuracy on GC, 89.7% on PCam
and 95.5% on SipakMed. However, the accuracy performance of
SqueezeNet indicates that this light-weight model is harder to train
from scratch than other models, as always has the lowest accuracy.
In summary, our method performs well on several tumor datasets,
and we find a balance between classification accuracy and efficiency
of lightweight models.

A confusion matrix is an error matrix that can be used to visual-
ize results to provide an objective assessment of the classification
performance of the classification model. The depth of the color in
the diagonal represents the number in the cell, and the number
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Table 2: Classification performance on different datasets and different models. This table contains accuracy (acc), precision
(pre), recall (rec), and f1-score (f1). The bold values show the best one, and the underline values show the second.

dataset
method GC PCam SipakMed
acc pre rec f1 acc pre rec f1 acc pre rec f1 acc pre rec f1

VGG 0973 0973 0973 0973 | 0.853 0.854 0.853 0.853 | 0.754 0729 0.754 0.738 | 0.923 0923 0923 0.923
ResNet 0.994 0994 0994 0994 | 0.897 0.899 0.897 0.897 | 0.774 0.760  0.774  0.764 | 0.955 0.955 0.955 0.955
SqueezeNet 0.895 0.897 0.895 0895 | 0.853 0.853 0.853 0.853 | 0.736  0.676  0.736  0.702 | 0.713  0.578 0.713  0.635
Inception-v3 | 0.990 0.990 0990 0990 | 0.878 0.887 0.878 0.877 | 0.757 0.724 0.757 0.735 | 0.926 0.936  0.925  0.925
DenseNet 0.996 0.996 0.996 0.996 | 0.886 0.894 0.886 0.886 | 0.810 0.794 0.810 0.800 | 0.963 0.962 0.963  0.962
DDSNet | 0.996 0.996 0.996 0.996 | 0.896 0.900 0.896 0.895 | 0.806 0.792 0.806 0.796 | 0.971 0.971 0.971 0.971
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Figure 4: The confusion matrix of our method in different
datasets. The x-axis is predicted label, and the-y axis is true
label. The sub-figures show the result on specific dataset.

concentrated on the diagonal represents the number of correct
classifications. As shown in Fig. 4, our method achieves high clas-
sification performance on the GCand SipakMed datasets, while
the prediction accuracy of SC and PCam is relatively low. Fig. 4(c)
shows that the distribution of labels in the SC dataset is imbalanced,
as the sample size of ‘akiec’, ‘df” and ‘vasc’ are much smaller than
the ‘nv’. This reminds us that additional data augmentation meth-
ods should be applied to imbalanced datasets. As for PCam, this
dataset has a small origin image size (96x96), which contains less
feature information.

4.4 Quantization Performance on IoT Device

Our quantization performance test is based on the device shown
in Fig. 3(a). The pre-quantization inference performance is mea-
sured by an onboard CPU, quad-core Cortex-A7, which focuses
on floating-point arithmetic. The post-quantization inference per-
formance is measured by an onboard NPU, AX620A, which does

integer arithmetic. And the quantization process is deployed in a
virtual machine, with a 6-core CPU and 16 GB memory.

ResNet

1.0000
0.9950
0.9900
0.9850
0.9800
0.9750

0.9700

SqueezeNet Inception-v3 DenseNet DDS

mGC mPcam ®SipakMed mSC

Figure 5: The column chart of cosine similarity. This chart
compares cosine similarity of the original output and quan-
tized output for different models on four datasets. The x-axis
shows the name of each model, the y-axis shows the value
of cosine similarity.

First, cosine similarity is the most common metric to illustrate
the difference in prediction output between the original model
and the quantized model. We compare the cosine similarities of
different models on different datasets, and the results show that
all the cosine similarities are higher than 0.98, which means the
quantization method only changes the model output slightly and
the quantized model is nearly unaffected. Fig. 5 shows the detail of
cosine similarity. The complex architecture of Inception-v3 results
in lightly worse performance. Due to the hardware limitation, we
can not quantize the VGG model successfully.

Table 3 presents the inference time performance of the baseline
models and our proposed method. The inference time measured
in milliseconds indicates how long each model takes to make an
inference on CPU, GPU, and NPU. We apply the original models
on the CPU and quantized models on the NPU. The “Initializer"
column shows the preparation time required to load the quantized
models. It’s worth noticing that our DDS method achieves the best
time efficiency in three metrics, i.e., shortest CPU, NPU, and Ini-
tialization time. The results demonstrate that the quantized model
has a drastic speed improvement compared to the original model.
After quantization, the inference time is approximately 118 times
faster (2951.35ms/25.02ms) for DenseNet and about 106 times faster
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Table 3: Inference time performance for different models.
We compare the CPU inference time and NPU inference time
specifically for origin model and quantized model.

Models CPU GPU(A30) NPU Initializer
VGG 3096.49 1.77 - -
ResNet 1210.28 1.48 5.26 547
SqueezeNet 642.99 1.25 7.44 195.27
Inception-v3  6165.96 6.69 24.35 2031.94
DenseNet 2951.35 9.47 25.02 1397.85
DDS 488.25 2.75 4.59 73.88

=

(¢) A nv sample in SC (d) ADYS sample in SipakMed

Figure 6: The Gradient Class Activation Map (GCAM) of can-
cer images. For each pair of images, the left is the original
image, and right is heatmap

(488.25 ms/4.59ms) for our method. Additionally, our method is
about 6 times faster than DenseNet before quantization (488.25ms
vs. 2951.35ms) and about 5.5 times faster after quantization (4.59ms
vs. 25.02ms), indicating that our lightweight model method runs
much more efficiently with significantly less computation cost.

In summary, compared to other models, our method stands out
by having a faster quantization inference time, making it a desirable
choice for computing resources-limited applications.

4.5 Visualization and Explainability

In medical applications, providing predictions along with explana-
tions is expected. We adopted the Gradient Class Activation Map
(GCAM) to generate a heat map for the input image, representing
the contribution distribution to the predicted output. A higher score
indicates that the corresponding area of the original image has a
strong response to the network and contributes significantly to the
prediction. The different color areas in the gradient heat map rep-
resent varying impact levels (gradient scores), with red indicating
higher contributions and blue indicating lower ones, as shown in
Fig. 6. We used four image examples to demonstrate the explain-
ability of our method: a TUM image from the GC dataset, a tumor
image from the PCam dataset, an nv image from the SC dataset,
and a DYS image from the SipakMed dataset. For each sub-figure,
the left image is the original test image, and the right image is the
corresponding GCAM heat map. These visualizations help illustrate
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(a) The t-SNE visualization of GC (b) The t-SNE visualization in PCam
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Figure 7: The t-SNE data visualization results. The x-axis
and y-axis represent the numerical range of the t-SNE com-
pression. The sub-figures (a) to (d) illustrate t-SNE results of
different results.

which areas of the image the model is focusing on when making
predictions, providing insights into the decision-making process.
For example, in the Fig. 6(c) and 6(d), the red areas highlight the
regions of the image most relevant to their respective classes.
Besides the gradient-based method, we also visualize the dataset
in low-dimensional space using t-distributed Stochastic Neighbor
Embedding (t-SNE). The t-SNE randomly embeds high-dimensional
image features into a lower-dimensional space through an algo-
rithm, allowing them to be visually represented. Here, we extract
the prediction output of our proposed method with test dataset,
and use t-SNE to compress the features into two dimensions, which
can then be plotted as a 2D figure, as shown in Fig. 7. The Fig. 7(a)
and 7(d) are the visualizations of GC and SipakMed datasets. Our
proposed method achieves high accuracy on these two datasets,
with clear decision boundaries, as sample points with the same class
label cluster together. The PCam dataset is a binary classification
task, and the Fig. 7(b) illustrates the t-SNE plot forming a “w" shape,
with the decision boundary twisted near the middle of the manifold.
The SkinCancer dataset has lower accuracy compared to the others.
From Fig. 7(c), we can see that the sample points in this dataset
are imbalanced, which is the main reason for the lower accuracy.
In summary, t-SNE helps facilitate the analysis of neural network
performance and the identification of potential issues.

4.6 Limitation

Our model has achieved competitive results compared to the base-
line across multiple datasets. However, its performance is slightly
lower than that of best complex models, due to the inevitable preci-
sion loss (float->int) during the quantization process. Additionally,
our model’s performance on imbalanced datasets still requires im-
provement. This highlights the need for special attention when



SAC 25, March 31-April 4, 2025, Catania, Italy

handling datasets during the training of lightweight models, as this
can significantly impact the final outcomes.

5 Conclusion

In this paper, we investigate the problem of tumor tissue image
classification and realize the proposed method in a real resource-
limited IoT device. Specifically, considering the large size and slow
computation of current deep learning models, we adopt the dense
convolutional network as the model framework and then use depth-
wise separable convolution to lightweight the network model for
reducing the size and parameters of the proposed model. In addi-
tion, based on the trained tumor tissue image classification model,
we apply the model quantization algorithm by optimizing the scale
parameter. Finally, the quantized model is deployed and evaluated
on the development device and an end-to-end platform for tumor
tissue classification is developed. Extensive experiments based on
the original model and the quantized model are conducted on the de-
vice, showing the outstanding performance of our proposed method
in accuracy and efficiency after quantization deployment.
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