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Abstract—Generative AI has flourished over the past decade,
with generative models advancing in both the industrial and
academic sectors. Given various applications, some scenarios
have seen the misuse of generative AI, particularly in the
integration with the Internet of Things (IoT). IoT devices often
handle personal and sensitive data, raising serious concerns
about privacy leakage and security breaches when generat-
ing data. As a promising countermeasure, machine unlearning
has emerged to solve the problems posed by these generative
models by effectively removing specific concepts or sensitive
information from trained models. In this survey, anchored in
generative models, machine unlearning approaches are reviewed,
categorized, and discussed comprehensively and systematically.
Existing unlearning approaches are classified into gradient-based
techniques, task vectors, knowledge distillation, data sharding,
and reliable unlearning methods. Apart from previous works, this
survey extends the review of attack methods that aim to exploit
the vulnerability in generative models and assess the robustness
of these unlearning methods. In addition, popular metrics and
datasets in machine unlearning research are summarized and
evaluated based on effectiveness, efficiency, and security. Finally,
we shed light on the future directions of this emerging research
topic by discussing applications, highlighting challenges, and
exploring research frontiers for the current machine unlearning
community and the new investigators to come.

Index Terms—Machine Unlearning, Generative AI, the Inter-
net of Things, Security & Privacy.

I. INTRODUCTION

The rise of Artificial Intelligence Generated Content (AIGC)
has substantially transformed the landscape of digital content
creation [1]–[3]. Generative models have become one of the
most dynamic and rapidly advancing research areas in AIGC,
thanks to significant advances in deep learning models over
recent years. From generating photorealistic images to creating
a meta-universe, diverse applications are mainly derived from
the three prominent generative model families: Generative Ad-
versarial Networks (GANs) [3]–[6], AutoEncoder (AE) [7]–
[11], and Diffusion Models (DMs) [12]–[15]. Although AIGC
offers new opportunities, these generative models pose signif-
icant challenges to generative AI in terms of data privacy, se-
curity, and ethical accountability when misused. For example,
by taking crafted prompts, these models may generate content
that infringes on copyright or contains private information,
including sensitive intelligence and secrets [16]–[19].
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Meanwhile, the Internet of Things (IoT) received consider-
able benefits from generative AI along with emerging chal-
lenges [20]–[23]. The enhanced capability of generative mod-
els enables various IoT devices, including mobile phones [24],
autonomous vehicles [25], robots [26], and applications in the
metaverse [27]. However, IoT devices are prime targets for
attacks as they handle large amounts of sensitive information
from terminal users. Malicious attacks can easily compromise
these IoT devices and generative models, revealing sensitive
or private information on which the models are trained.

Although traditional approaches to content erasing involve
retraining from scratch, these processes are computationally
expensive and often impractical for large-scale generative
models, especially on resource-constrained devices. As a re-
sult, the concept of machine unlearning has recently gained
attention. It addresses these problems by selectively elim-
inating specific information or concepts from an existing
model (e.g., generative AI models) without compromising
its general performance. Machine unlearning [28]–[31], in-
spired by the legal and ethical imperatives of the “right to
be forgotten”, has become a critical technique in machine
learning research. Many countries/regions have promulgated
relevant laws and provisions to restrict the use of data in
models, such as the European Union’s General Data Protection
Regulation (GDPR) [32], the California Consumer Privacy
Act (CCPA) [33], and the Act on the Protection of Personal
Information (APPI) [34]. Machine unlearning provides an
effective solution by selectively removing specific data or
concepts. This capability helps align models with privacy laws
and reduces potential biases in generated outputs. Due to the
complex output and high-dimensional latent spaces, machine
unlearning presents unique challenges and opportunities in the
generative models. Successful unlearning within these models
requires accurately pinpointing the concepts to be removed
while carefully preserving the model’s general performance
and stability. For instance, when removing the concept “car”
from a model, it is crucial to eliminate car-specific charac-
teristics from the generated images, while retaining unrelated
capabilities, such as accurately generating images of “trains.”

This survey comprehensively explores machine unlearning
techniques applied to generative models, focusing on image
generation domains. Specifically, to the best of our knowledge,
this survey is the first to focus on the security of machine un-
learning methods, as unlearned models may still be vulnerable
to various adversarial attacks as techniques emerge.

A. Summary of Contributions
Table I exhibits the contributions and highlights the dif-

ferences between our survey and some prior art. Compared
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with [35]–[41], our paper conducts a comprehensive survey
on machine unlearning, which underlines the combination of
generative models and machine unlearning, with a focus on the
security implications of these methods. The main contributions
of our paper are as follows:

• We provide a detailed taxonomy of existing methods
for machine unlearning in generative models, covering
a broad spectrum of techniques.

• We explicitly focus on the security aspects of machine
unlearning and thoroughly review potential vulnerabilities
and attacks against unlearning methods.

• Mainstream metrics and datasets for evaluating unlearn-
ing methods are collected and summarized in terms of
effectiveness, efficiency, generation quality, and security.

• We emphasize practical applications and highlight current
challenges and potential future research directions of
machine unlearning in this field.

B. Systematic Literature Review Method

We employ a systematic literature review to survey machine
unlearning in generative models. The method [42] introduces
an appropriate protocol design approach to help computer
science and engineering researchers perform rigorous reviews
of current empirical evidence. The primary search process for
this review protocol, which informs our survey, is presented
as follows:

The review protocol consists of several steps, including
selecting keywords, identifying relevant databases, defining
inclusion criteria, and extracting review data. (i) Our search
concentrates on the keywords “machine unlearning” and “gen-
erative models”. Thus, we define the advanced search rule as
“(machine unlearning) AND (generative models OR diffusion
models OR AEs OR GANs)”. (ii) We employ this rule to
search for relevant papers in IEEE Xplore, the ACM Digital
Library, arXiv of Computer Science, and Google Scholar,
limiting the publication years from 2020 to 2025. (iii) After
filtering and removing duplicates, we reviewed 151 references,
19 of which pertained to various survey topics, 41 to machine
unlearning techniques, and 91 to related issues. (iv) Data ex-
traction was performed based on insights from these reviewed
references.

C. Organization

Fig. 1 highlights the structure of this survey, where the core
parts are Section III, IV, and V, which study the unlearning
taxonomy, unlearning security, and evaluation methods. The
remainder of this paper is organized as follows. Section II
introduces the background of related work in machine un-
learning and the preliminaries of techniques in generative
models. Section III introduces the method taxonomy, system-
atically categorizing existing machine unlearning approaches
in generative models. Section IV reviews the security as-
pects of unlearning, focusing on existing attack methods and
the corresponding defense strategies. Section V introduces
the evaluation methods for the performance of unlearning
methods. The critical applications of machine unlearning in
real-world scenarios are explored in Section VI. Section VII

TABLE I: Comparison with existing surveys with topics: T1 -
Generative Models, T2 - Machine Unlearning, T3 - Security.

Survey
Covered Topics

Key Content
T1 T2 T3

[35] ✓ - - Image generation models

[36] - ✓ - Machine unlearning methods

[37] - - ✓ Security of deep learning

[38] ✓ ✓ - Machine unlearning in generative AI

[39] - ✓ ✓ Security of machine unlearning

[40] ✓ - ✓ Security of diffusion models

[41] ✓ - ✓ Security of multimodal generative models

Ours ✓ ✓ ✓
Machine unlearning in generative models and

the security of these methods

delves into the challenges and future work, and opens research
directions in this emerging field. Finally, Section VIII draws
a conclusion of this survey.

II. BACKGROUND

A. Machine Unlearning

Machine unlearning [43] can be broadly defined as the
process of selectively removing the influence of specific train-
ing data from a machine learning model without retraining
from scratch. Since many models use user data collected
from the Internet, when models are trained with sensitive
or personal data, users have the right to request that the
model owner remove their data to ensure compliance with
privacy regulations. In this case, machine unlearning methods
are essential to ensure that the model complies with the law
requirements. Machine unlearning [28]–[31], [36], [44] has
been widely applied to various models, such as classification,
segmentation, and generative models. However, it poses unique
challenges in generative models due to their complexity and
size. Generative models often learn intricate relationships in
the data, and removing specific influences can be difficult
without compromising the model’s overall performance.

The evolution of machine unlearning started in 2014 with
the “Right to be Forgotten” and has been investigated in
various areas. In 2015, the first formal definition of machine
unlearning was proposed, laying the foundation for subsequent
research. Regulatory frameworks such as the GDPR and CCPA
in 2018 further solidified the legal necessity for machine un-
learning. Certified unlearning was explored in 2019, providing
assurances for data deletion. In 2021, the SISA framework
was introduced to enhance the scalability of unlearning in
distributed scenarios. From 2023, machine unlearning has
been introduced into generative AI, with a range of new
methods covered in this survey. Table II summarizes the sig-
nificant milestones in the development of machine unlearning,
highlighting key signals in the research, legal, and industry
domains.
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Fig. 1: The overview structure of this survey

TABLE II: The milestone timeline of machine unlearning development

Year Milestone Area Key Innovation

2014 Right to be Forgotten [45] Legal Introduced concept of forgetting digital traces

2015 First Machine Unlearning Paper [43] Research Defined concept of machine unlearning formally

2018 GDPR [32], CCPA [33] Legal Formalized the right to be forgotten in law

2019 Certified Unlearning [46] Research Guarantees for data deletion

2021 SISA Framework [28] Research Sharded training to speed up unlearning

2023 Machine Unlearning in Generative AI [18], [19] Research Fine-tuning generative models to forget knowledge

2023 Action in Tech Componies [47]–[50] Industry More unlearning methods are explored in the industry

B. Related Topics

1) Knowledge Editing: Knowledge editing [51]–[53] refers
to techniques used to directly modify a model’s parameters or
internal representations to achieve a desired change in behav-
ior. Techniques [54]–[56], such as mechanistic localization and
conflict-free editing, have been explored as potential solutions
to unlearn specific data in generative models. Many researchers
employ knowledge-editing methods to mitigate the influence
of specific training data without requiring complete retraining.

2) Poisoning Attacks: Poisoning attacks [57]–[59] involve
injecting malicious data into the training process to compro-
mise the integrity or behavior of a model. Such attacks produce
undesirable output features or biased embedding for generative
models. The poisoning attacks [60]–[62] and machine unlearn-
ing can confuse the model with a specific concept, causing
the failure to generate a text-image-aligned pair. However,
poisoning attacks introduce dirty data during model training,
whereas machine unlearning is typically applied after the
model has been trained.

C. Generative Models

By learning complex data distributions, generative models
can generate high-quality synthetic images. The architectures

of these popular models, such as GAN, AE, and DM, are
shown in Fig. 2.

GAN consists of two neural networks: a generator G and
a discriminator D, which are trained simultaneously in a
minimax game. The generator learns to map a latent variable
z ∼ pz(z) to a data distribution G(z). The discriminator aims
to distinguish real data samples from generated ones. The
objective function for GANs is formulated as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))],
(1)

where pdata(x) is the real data distribution, and pz(z) is a prior
distribution (e.g., Gaussian) used to sample z. During training,
the generator improves by producing more realistic samples
to fool the discriminator. In contrast, the discriminator learns
to better distinguish real from fake samples. This adversarial
training process ultimately leads the generator to approximate
the actual data distribution, allowing the generation of high-
quality synthetic data.

AE aims to learn a compact representation of the input
data by encoding it into a lower-dimensional latent space and
subsequently reconstructing it. It consists of two components:
an encoder E that maps input data x to a latent representation
z, and a decoder D that reconstructs x̂ from z. This process
can be expressed as:

z = E(x), x̂ = D(z). (2)
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Fig. 2: Overview of different generative models.

The model is trained by minimizing the reconstruction loss,
typically measured as the mean squared error between the
original and the reconstructed input. Based on this basic
architecture, various models have been developed, including
the variable autoencoder (VAE) [63] and the mask autoencoder
(MAE) [64].

DM learns to synthesize data by gradually denoising a
variable sampled from a Gaussian distribution. These models
are based on a forward diffusion process, which incrementally
adds Gaussian noise to a data sample x0 over T timesteps,
following a Markovian process. The reverse process aims to
learn a parameterized denoising function pθ(xt−1|xt), typi-
cally modeled as a neural network that predicts the original
sample given a noisy observation. The training is to minimize
the variational bound on the negative log-likelihood, which
simplifies to a noise prediction loss:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
, (3)

where ϵ ∼ N (0, I) is the added noise, and ϵθ(xt, t) is the
predicted noise. By iteratively optimizing the learned reverse
process, diffusion models can generate high-quality samples,
which makes them particularly effective for image, audio, and
text synthesis.

D. Threat Models

1) White-Box Attack: The white-box setting [65] means
that attackers have full access to the target generative model.
They can mostly use parameters, architecture, source codes,
and other internal information. This setting aligns with stan-
dard practices, as the models are shared in the open source
community, such as Github [66] and Hugging Face [67].

2) Black-Box Attack: The black-box setting [68] represents
the most challenging and demanding scenario. In this case,
attackers have limited access to the target generative models.
Mostly, they use the designed input queries and the generated
output distribution to guess the model’s information.

III. UNLEARNING METHOD TAXONOMY

This section classifies and discusses various unlearning
methods based on their techniques. A concise reference table
is provided in Table III.

A. Gradient-based without Conditions

Gradient-based methods utilize model gradients to effi-
ciently eliminate the impact of specific data. Due to their
different architectures, each unlearning method has its own
limitations and applicable models. Gradient-based methods
without conditions mean that they directly use images as input
and do not require additional text prompts as conditional input.

Adapt-then-Unlearn [69] is a two-stage unlearning method
for pre-trained generative adversarial networks (GANs) by
leveraging parameter space semantics. The first stage fine-
tunes the pre-trained GAN generator GθG to generate samples
that only contain the undesired feature, using negative sam-
ples for training. This adapted generator is trained using an
adversarial loss with an adaptation regularization term. The
adaptation loss penalizes deviations in important parameters
using Fisher information. In the second stage, unlearning is
performed by optimizing the generator on positive samples
while ensuring that its parameters diverge from those of the
adapted generator. Sharing a similar idea, Cascaded Unlearn-
ing [70] introduces a substitute mechanism to maintain latent
space continuity and a fake label regularization. The substitute
mechanism reassigns the latent embedding to a meaningful
alternative by replacing the target unlearning image x0 with
an alternative representation S(x0). This method prevents
abrupt changes in the latent space, while ensuring that the
model no longer generates the original image. Fake label
regularization defines a criterion for the discriminator, trained
to assign a low-confidence score to target images. These
multistage methods encourage the generator to move away
from the adapted parameters while maintaining high-quality
image generation, although with weak time efficiency.

Based on the feature discriminator, Feature Unlearn-
ing [71] unlearns specific features in GANs and VAEs. This
method involves identifying the target feature within the
latent space, which is achieved by using vector arithmetic.
The target vector ze is calculated by subtracting the mean
latent representation of the negative dataset (without the target
feature) from the mean latent representation of the positive
dataset (with the target feature). When the target feature is
absent, a reconstruction loss ensures that the output remains
unchanged. The target-erased output is changed for latent
vectors to unlearn the target feature. This framework offers
an effective method for feature unlearning that relies on a
powerful discriminator.

Considering the privacy leakage, Generative Unlearning
for Any Identity (GUIDE) [72] erases specific identities from
pre-trained EG3D and StyleGAN2 models. The framework
identifies the target latent embedding by extrapolating between
the source and the average latent embedding, which ensures
that the target identity is distinct from the source identity while
maintaining proximity to the latent distribution. This method
designs loss functions to optimize the pre-trained model, which
includes local and adjacency unlearning loss, as well as global
preservation loss. However, the loss functions make it hard to
find the best balance between utility and privacy.

I2I Generator Unlearning [73] optimizes the encoder-
decoder model to control the distributions of generated images
for both the remaining and forgotten sets. The objective of
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unlearning involves minimizing the KL divergence in the
remaining set DR while maximizing it in the forgotten set
DF . The objective of unlearning involves minimizing the KL
divergence in the remaining set DR while maximizing it in
the forgotten set DF with the following loss function,

Lunlearn = Exr∼DR,xf∼DF ,n∼N(0,Σ)[∥Eθ(T (xr))−
Eθ0(T (xr))∥

2
2 + α∥Eθ(T (xf ))− Eθ0(T (n))∥

2
2],

(4)

where T (·) is an operation such as cropping or masking
applied to x. This framework achieves efficient unlearning
by targeting only encoder parameters while preserving com-
putational efficiency. Moreover, it is compatible with various
generative models, including the GAN and MAE.

B. Gradient-based with Conditions

In this category, when fine-tuning the model to unlearn
specific concepts, text prompts are used as conditional input. In
some cases, these unlearning methods do not require additional
auxiliary datasets and assume that the model has a built-in
conditioning mechanism.

DMs face additional challenges due to the flexibility of
text prompt conditions. Safe Latent Diffusion (SLD) [74]
constructs a safety guidance by modifying the classifier-free
guidance, which additionally uses an inappropriate concept
prompt. Additionally, a warm-up parameter ensures that guid-
ance is applied after the initial image structure emerges. Lastly,
a momentum term is introduced to accelerate changes consis-
tently, guiding them in the same direction across timesteps.
Thus, SLD modifies latent vectors in the diffusion process,
effectively mitigating inappropriate image content without
retraining the model.

As a pioneer in the field, Erased Stable Diffusion
(ESD) [18] introduces a fine-tuning approach to erase spe-
cific concepts. This method leverages the model’s knowledge,
thereby avoiding the need for external datasets. The method
modifies the conditional noise prediction ϵθ(xt, c, t) for a
given concept c to ensure that it is guided away from the
undesired concept. The optimization objective of ESD is
expressed as:

ϵθ(xt, c, t)← ϵθ∗(xt, t)− η [ϵθ∗(xt, c, t)− ϵθ∗(xt, t)] , (5)

where ϵθ∗ represents the frozen pre-trained model and η is the
strength of the negative guidance. This modified score function
restricts the erasure of the target concept. By fine-tuning the
model’s parameters with this objective, ESD achieves perma-
nent concept erasure while maintaining minimal interference
with other concepts. However, when erasing entire object
classes, this method may partially fail, removing only specific
distinctive attributes rather than the entire class concept.

Selective Amnesia (SA) [75] is a method inspired by con-
tinuous learning to achieve controlled forgetting in conditional
generative models. The approach utilizes Elastic Weight Con-
solidation and Generative Replay to strike a balance between
forgetting and retaining essential information. The goal is to
maximize the logarithmic likelihood of the forgotten set to
obtain a maximum a posteriori estimate. The objective for
forgetting is derived as:

LSA = Eq(x|c)pf (c)[log p(x|θ, c)]− λ
∑
i

Fi
1

2
(θi − θ∗i )2

+Ep(x|c)pr(c)[log p(x|θ, c)],
(6)

where x is a sample image, c is the corresponding concept,
θ∗ represents the parameters of the pre-trained model, Fi is
the Fisher Information Matrix. SA provides controlled and
interpretable forgetting with minimal impact on remembered
concepts.

Forget-Me-Not (FMN) [76] modifies cross-attention scores
to diminish the representation of undesired concepts while
preserving the model’s generative abilities for other content.
The cross-attention mechanism refines visual features using
textual features, and attention scores determine the influence of
textual tokens on visual features. The attention re-steering loss
function minimizes the attention scores associated with the
target concept across the index of textual tokens via Eq. (7):

LAttn =
∑

a∈A[:,i:j]

∥a∥2, (7)

where A[:, i : j] indexes the attention scores of the target
concept in textual tokens. Then, a visual denoising loss is
introduced to refine the generated samples, which ensures
consistent generation quality during forgetting. The final loss
function combines both objectives, balancing the contributions
of the two losses. FMN can eliminate the need for user-
defined replacement concepts, allowing the model to revert to
its inherent knowledge. This approach is lightweight, practical,
and applicable to real-world scenarios. However, it requires an
auxiliary dataset to unlearn specific concepts.

Saliency Unlearning (SalUn) [77] targets the weight of the
selected model using weight saliency. This method identifies
the salient weights by computing a saliency map based on
the gradient of the forgetting loss ℓf (θ;Df ) with respect to
the model weights θ. The saliency map is defined as: mS =
I(|∇θℓf (θ;Df )|θ=θo

≥ γ), where I is the indicator function, γ
is a threshold, and θo represents the pre-trained model weights.
This map highlights the weights that are influential for the
forgotten dataset Df . The model weights are decomposed into
salient and non-salient components as follows,

θu = mS ⊙ θ + (1−mS)⊙ θo, (8)

where θu represents the updated model, and ⊙ denotes
element-wise multiplication. This formulation ensures that up-
dates are focused only on salient weights. The weight saliency
approach achieves efficient and targeted updates, reducing
computational overhead compared to retraining while main-
taining the model’s generative performance for non-forgotten
data.

Based on geometric and textual information, GEOM-
ERASING [78] achieves a precise and controlled removal of
implicit concepts. Implicit concepts, such as watermarks or
toxic content, are inherently learned during training without
explicit textual representation, making their removal particu-
larly challenging. The method begins by identifying implicit
concepts in the generated images using an external classifier.
The classifier outputs confidence scores pi and coordinates
oi = [ai1, b

i
1, a

i
2, b

i
2], representing the bounding box of the

implicit concept within the image, which is converted into
location tokens for the text prompt. The updated text condition
incorporates both the concept prompt and its spatial location,
represented by discrete location tokens. To reduce emphasis
on regions containing implicit concepts, a region-specific
weight map is applied during optimization. GEOM-ERASING
achieves the precise erasure of implicit concepts by integrating
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spatial information with textual prompts and reweighting the
loss in clean regions.

EraseDiff [79] formulates the objective function based on
KL divergence but focuses on diffusion model unlearning. A
constraint optimization problem is considered by deviating
from the learnable reverse process of the ground-truth de-
noising procedure. EraseDiff modifies the backward diffusion
process to prevent the generation of meaningful images re-
lated to forgotten concepts. To enforce effective unlearning,
the learned noise predictor ϵθ̂ is trained to produce noise
from a different distribution, such as uniform noise. The
final optimization problem integrates both objectives under a
constrained formula:

min
θ
L(θ,Dr) s.t. f(θ,Df )−min

ϕ|θ
f(ϕ,Df ) ≤ 0. (9)

This method balances forgetting and retention, ensuring the
model maintains high utility while eliminating information.

Concept Ablation (CA) [80] also minimizes the KL diver-
gence between the model’s distribution for a target concept
and that of an anchor concept, preventing the generation
of undesired styles, instances, or memorized images. CA
offers two optimization strategies: model-based ablation and
noise-based ablation. Anchor distributions are derived from
conditioning the pre-trained model on anchor prompts or by
pairing anchor images with modified prompts. Regularization
using the standard diffusion loss ensures that surrounding
concepts are preserved. This method is efficient in ablating
instances, artistic styles, and memorized images.

Separable Multi-Concept Erasure (SepME) [81] ad-
dresses the challenges of multi-concept erasure and subse-
quent restoration through two key components: generation of
concept-irrelevant representations (G-CiRs) and weight decou-
pling (WD). G-CiRs prevent the erasure of substantial but
irrelevant information to maintain DMs’ generative capabilities
for remaining concepts. WD decomposes weight increments
into independent components to enable flexible erasure and
restoration of concepts. SepME aims to integrate G-CiRs and
WD, which provides a scalable and flexible solution for multi-
concept erasure and restoration, ensuring minimal interference
with remaining concepts. Compared to weight decoupling,
Target-aware Forgetting (TARF) [82] addresses challenges
in machine unlearning by decoupling the class label and the
target concept. It introduces a dynamic optimization process
that integrates annealed forgetting and target-aware retaining
to selectively erase undesired concepts. Concretely, TARF
employs a three-phase process, including target identification
to isolate forgetting and retaining data, target separation to de-
couple entangled representations, and retraining approximation
to align with the retraining objective.

Challenging Forgets (CF) [83] proposes a bi-level opti-
mization (BLO) framework to evaluate machine unlearning
effectiveness under challenging scenarios. The approach fo-
cuses on identifying the most difficult subset of data, known
as the “worst-case forget set”, to unlearn while preserving the
utility of the remaining data. BLO has two levels, where the
upper-level optimization selects the worst-case forget set, and
the lower-level optimization solves the unlearning problem.
To efficiently solve optimization problems, gradient unrolling
is applied in conjunction with sign-based stochastic gradient

descent, thereby reducing computational complexity by elim-
inating the need for second-order derivative calculations. The
combined optimization ensures the selection of the worst-case
forget set and the robustness of the unlearning methods.

Few-shot unlearning [84] unlearns specific concepts from
text-to-image diffusion models by modifying the text encoder.
This approach ensures that the model maintains image fidelity
while preventing the generation of undesired concepts. The
method is inspired by textual inversion, updating the text
encoder’s concept representation with a small perturbation:
cθ ← cθ + ∆c. The method applies a loss function similar
to textual inversion, but in the reverse direction, to compute
∆c. To minimize disruption to unrelated concepts, the method
limits training iterations and updates only specific layers
of the text encoder, such as the feed-forward layers and
the final self-attention layer. This maintains the overall text-
image alignment while erasing the target concept. Few-shot
unlearning offers a rapid and efficient approach to machine
unlearning in diffusion models. However, without adjusting U-
Net parameters, this method retains the potential for generating
NSFW content.

C. Task Vector

Task Vector approaches introduce specific directional
changes in the latent space to suppress undesired data rep-
resentations, which are conducted by weight displacements
in the model’s parameter space resulting from fine-tuning a
specific task or concept. Moderator [85] introduces a Task
Vector-based method for fine-grained content moderation in
text-to-image diffusion models. The system employs self-
reverse fine-tuning (SRFT) to generate task vectors, which rep-
resent weight displacements fine-tuned for specific moderation
tasks. The process begins by prompting the model to generate
self-supervised datasets corresponding to the policy objectives,
which are then computed as the weight difference between the
fine-tuned and original models. These vectors are subtracted or
adjusted to achieve moderation while preserving the generative
ability for unrelated content. The Task Vector-based approach
offers a scalable, efficient, and adaptable solution for content
moderation in diffusion models, balancing robustness and
performance preservation.

Similar to Moderator, Robust Concept Erasure
(RCE) [86] uses task vectors for robust concept unlearning
in diffusion models. This method erases undesirable concepts
in an input-independent manner by subtracting the task vector
from the original model weights. The authors propose the
Diverse Inversion technique to optimize the trade-off between
concept erasure and maintaining the model’s generative
performance. This method generates diverse adversarial
prompt embeddings targeting the undesired concept, ensuring
that the model is robust to unexpected prompts.

D. Knowledge Distillation

Knowledge Distillation facilitates unlearning by transferring
knowledge from the original model to a new model, eliminat-
ing the undesired information. Safe self-Distillation Diffusion
(SDD) [87] is a self-distillation method that fine-tunes the
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model by enforcing the noise estimate conditioned on a target
concept to align with the unconditional one. Thus, it eliminates
the problematic concept without requiring explicit negative ex-
amples. To enforce the removal of a specific concept cs, SDD
modifies the loss function by ensuring that the noise estimate
conditioned on cs is indistinguishable from the unconditional
noise estimate. In addition, an exponential moving average
teacher model is introduced to stabilize the optimization and
prevent catastrophic forgetting. The final objective integrates
self-distillation loss with standard diffusion loss to balance
concept removal and image quality.

Score Forgetting Distillation (SFD) [88] is also a
distillation-based method, using cross-class score distillation.
This method aligns the conditional scores of the target and
replacement classes to facilitate the unlearning process. As it
is difficult to solve the loss function directly, the authors in-
troduce an alternative denoising score matching loss function.

Ldsm(ψ; θ, c) = Ezt,t,x∼Dθ,c

[
γt
a2t
σ4
t

∥xψ(zt, c)− x∥22

]
. (10)

SFD incorporates a data-free loss function into the distillation
objective of a pre-trained diffusion model, mitigating the need
for real data.

E. Data Sharding

Data Sharding splits the training data into shards, allowing
the removal of specific shards without affecting the integrity
of the remaining model. Diffusion Soup [89] introduces a
data sharding method that merges model weights trained
on different data shards for text-to-image diffusion models.
This approach enables efficient training-free continual learn-
ing and unlearning by simply averaging the model weights
corresponding to data shards. The soup weight is easy to
update based on the formula wsoup =

wsoup−kiwi

1−ki
. The

method ensures flexibility in handling dynamically changing
datasets, enabling the addition or removal of shards without
retraining. Diffusion Soup approximates the geometric mean
of distributions across data shards by averaging weights,
providing robust anti-memorization properties and zero-shot
style blending capabilities.

Compared to the weight distribution, Encoded Ensem-
bles [90] learns data attribution in diffusion models. This
approach trains multiple models on engineered subsets of
the training data, allowing for the efficient evaluation of
the training data’s influence on model outputs. Each subset
encodes specific training data characteristics, enabling tem-
porary unlearning through ensemble ablation. This method
circumvents the computational costs of traditional unlearning
by removing models associated with the target data from
the ensemble. It also introduces a Jacobian approximation
to expedite counterfactual generation. However, these data
sharding methods all have substantial space complexity due
to the storage of models or data.

F. Reliable Unlearning

Reliable unlearning uses explainable or stable training meth-
ods to eliminate the influence of specific data or concepts by
exploring closed-form solutions for unlearning.

Direct Unlearning Optimization (DUO) [91] utilizes
paired image data and incorporates output-preserving reg-
ularization. The method treats unlearning as a preference
optimization problem. Given paired datasets of unsafe images
x−
0 and their safe counterparts x+

0 , the preference model
learns a reward function r(x0), which is optimized using
a binary cross-entropy loss. To ensure the model does not
excessively diverge from its prior distribution, DUO employs
KL-constrained optimization:

max
pθ

Ex0∼pθ(x0)[r(x0)]− βDKL[pθ(x0)∥pϕ(x0)], (11)

where pϕ(x0) is the pretrained model distribution, and β
regulates divergence. The combined objective of DUO is to
balance unlearning and prior preservation. This approach en-
ables robust unlearning of unsafe concepts while maintaining
high-quality generation for unrelated content. However, this
method overlooks the intersection between the text encoder
and U-Net.

Concentrating on cross-attention projection matrices, Uni-
fied Concept Editing (UCE) [92] introduces a closed-form
editing framework to simultaneously moderate multiple con-
cepts in text-to-image diffusion models. The UCE framework
formulates unlearning as an optimization problem, modify-
ing the projection matrices Wk and Wv of the attention
mechanism. To erase an undesired concept ci, UCE aligns
its projection to a new target embedding c∗i , ensuring the
model no longer associates ci with its prior representation
v∗i ←W oldc∗i . The optimization is formulated as follows,

min
W

∑
ci∈E

∥Wci − v∗i ∥2 +
∑
cj∈P

∥Wcj −W oldcj∥2, (12)

where E is the set of concepts to edit and P is the set
of concepts to preserve. This function has a closed-form
solution, which allows UCE to efficiently apply multiple edits
in one step while preserving model quality, enabling large-
scale modifications without the need for costly retraining.

Building upon UCE, Reliable and Efficient Concept Era-
sure (RECE) [93] is also a closed-form approach, which
improves erasure by iteratively deriving new embeddings that
regenerate erased concepts and then reapply erasure. Given
an edited projection matrix W new, RECE finds a derived
embedding c′i that maximizes similarity to the original erased
concept. If c′ is found to elicit the undesired concept, then
a subsequent step erases it. To ensure model performance is
preserved while removing c′, RECE introduces a regularization
term that prevents excessive alteration of model behavior. The
final concept erasure is iteratively performed using Eq. (13)

c′ = (λI +
∑
i

W newT
i W new

i )−1(
∑
i

W newT
i W old

i )c. (13)

RECE significantly improves concept erasure efficiency by
leveraging an iterative closed-form approach that refines the
removed concept embeddings while preserving model quality.
It ensures more thorough unlearning than previous methods
while maintaining high fidelity in generated images.

IV. SECURITY OF UNLEARNING

Although the above methods show great potential to elim-
inate undesirable concepts, many works [108]–[110] reveal
the vulnerability of machine unlearning to different attacks.
Consequently, defense strategies are demonstrated to achieve
stronger unlearning against the attacks. Table III provides a
concise overview of these attack and defense methods.
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TABLE III: Overview of different methods and applications in machine unlearning for generative models.
Applications: A1 - Copyright Protection, A2 - Bias Alleviation, A3 - Safety Alignment.

Section
Category

Method
Category

Methods
Model

Category
Key Idea

Applications
A1 A2 A3

U
nl

ea
rn

in
g

M
et

ho
d

Ta
xo

no
m

y

Gradient-based
without Conditions

Adapt-then-Unlearn [69] GAN Two-stage Unlearning ✓

Cascaded Unlearn [70] GAN Label Substitute Mechanism ✓

Feature Unlearning [71] GAN, VAE Latent Space Projection ✓

GUIDE [72] GAN Latent Space Manipulation ✓

I2I [73] GAN, MAE, DM Encoder Mutual Information ✓

Gradient-based
with Conditions

SLD [74] DM Safety Guidance ✓ ✓

ESD [18] DM Log Probability Gradient ✓ ✓

SA [75] VAE, DM Continual Learning to Forget ✓ ✓

FMN [76] DM Attention Re-steering ✓ ✓

SalUn [77] DM Weight Saliency ✓ ✓

GEOM-ERASING [78] DM Geometric Information ✓ ✓

EraseDiff [79] DM Constraint Optimization ✓ ✓

CA [80] DM KL Divergence Minimization ✓

SepME [81] DM G-CiRs, Weight Decouple ✓

TARF [82] DM Target-aware Gradient Ascent ✓

CF [83] DM Worst-case Forget Set Selection ✓ ✓

Few-shot Unlearn [84] DM Text Encoder Few-shot unlearning ✓ ✓

Task Vector
Moderator [85] DM Self-reverse Fine-tuning ✓ ✓ ✓

RCE [86] DM Task Vector ✓ ✓

Knowledge Distillation
SDD [87] DM Self-Distillation ✓ ✓

SFD [88] DM Score Distillation ✓

Data Sharding
Diffusion Soup [89] DM Model Merging ✓

Encoded Ensembles [90] DM Ensemble Unlearning ✓

Reliable Unlearning
DUO [91] DM Direct Preference Optimization ✓

UCE [92] DM Closed-form Solution ✓ ✓ ✓

RECE [93] DM Closed-form Solution ✓ ✓ ✓

Se
cu

ri
ty

of
U

nl
ea

rn
in

g

White-box Attack

CCE [94] DM Textual Inversion ✓ ✓

P4D [95] DM Latent Space Manipulation ✓

UnlearnDiffAtk [96] DM Generation as Classification ✓ ✓

RECORD [97] DM Coordinate Descent ✓

Black-box Attack
RAB [98] DM Concept Extraction ✓ ✓

JPA [99] DM Gradient Masking ✓

DiffZOO [100] DM Query-Based Attack ✓

Defense Strategies

Receler [101] DM Lightweight Eraser ✓ ✓

AdvUnlearn [102] DM Adversarial Training ✓ ✓

RACE [103] DM Adversarial Training ✓ ✓

AdvAnchor [104] DM Adversarial Anchor ✓ ✓

DoCo [105] DM Concept Domain Correction ✓ ✓

Meta-Unlearning [106] DM Meta-learning Objective ✓ ✓

SAFREE [107] DM Self-Validating Filtering ✓ ✓

A. White-box Attack
In the white-box attack setting, attackers are assumed to

have full access to the pre-trained models. Circumventing
Concept Erasure (CCE) [94] is an attack method designed
to circumvent concept erasure techniques in text-to-image
diffusion models. This method exploits the hypothesis that
concept erasure in generative models often behaves as input
filtering rather than actual erasure. After applying concept
unlearning, the modified diffusion model alters its prediction
to suppress erased concepts. CCE circumvents this by learning
a placeholder string c∗ that reactivates the erased concept.
The learned embedding v∗ is optimized to ensure that c∗

effectively restores the erased concept. The learned embedding
v∗ is optimized as follows:

v∗ = argmin
v

Ezt,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ(zt, c∗, t)∥22

]
. (14)

To bypass inference-based erasure techniques, such as SLD,
CCE modifies its optimization to counteract the additional
guidance term. The learned embedding v∗ can then be substi-
tuted in the model vocabulary, allowing the user to generate
images of the erased concept without modifying the model
weights. CCE demonstrates that post hoc concept erasure
in diffusion models does not entirely remove concepts but
redirects them within the model’s embedding space.

Prompting4Debugging (P4D) [95] optimizes prompts in
the latent space to bypass concept removal methods, negative
prompting techniques, and safety-guided diffusion models.
Specifically, this method optimizes the noise prediction in the
unlearned model G′ conditioned on the adversarial prompt
P ∗ to closely match that of the unconstrained model G
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when conditioned on the original forbidden prompt P . The
optimization objective is as follows:

LP4D = ∥ϵθ(zt,W (P ), t)− ϵθ′(zt, P
∗, t)∥22, (15)

where W (P ) is the fixed text encoder mapping prompt P to
an embedding, and θ′ denotes the parameters of the safety-
equipped model. To improve transferability and interpretabil-
ity, P4D adopts a discrete optimization approach, where the
soft prompt P ∗ is continuously updated and then projected
onto a discrete vocabulary space. P4D uncovers new vul-
nerabilities in safety-enhanced T2I models using latent-space
optimization and red-teaming strategies.

UnlearnDiffAtk [96] exploits the inherent classification
ability of diffusion models, allowing for the generation of
adversarial prompts that circumvent unlearning mechanisms
without requiring auxiliary models. It formulates the attack as
a classification problem within the diffusion process:

pθ∗(c′|x) ∝
exp

{
−Et,ϵ[∥ϵ− ϵθ∗(zt|c′)∥22]

}∑
j exp {−Et,ϵ[∥ϵ− ϵθ∗(zt|cj)∥22]}

, (16)

where cj are competing prompts to compare classification
confidence. UnlearnDiffAtk minimizes the noise prediction
error for adversarial prompts, ensuring they are indistinguish-
able from legitimate prompts while successfully bypassing
the unlearning mechanism. Using the intrinsic classification
capabilities of DMs, the attack enables efficient adversarial
prompt discovery without requiring auxiliary classifiers or
diffusion models.

RECORD [97] discovers prompts that can generate erased
content by minimizing a loss function that measures the
deviation of the erased model’s noise predictions from those
of the original model. This method searches for an adversarial
prompt y∗ that minimizes the distance between their noise
estimates on the unlearned diffusion model ϵθ′ and the original
pre-unlearning model ϵθ. To efficiently search for y∗ in the
discrete token space, RECORD employs a coordinate descent
algorithm that iteratively optimizes individual tokens while
keeping the others fixed. The loss function is approximated
over a batch of sampled latent embeddings. At each step,
RECORD selects the token position s to update by computing
token gradients: gj = ∇cj L̂(y(cj , s), Z), where cj represents
candidate tokens. The algorithm evaluates the top K candidate
tokens and selects the one that minimizes L̂, updating the
prompt sequence accordingly. A greedy update strategy is
employed to ensure stable convergence in the discrete token
space: L̂(y(c∗, s), R) < L̂(y,R), where R is a reference set
used to track optimization progress. RECORD significantly
outperforms prior adversarial attacks, demonstrating that ex-
isting machine unlearning methods in diffusion models do not
fully unlearn knowledge.

B. Black-box Attack
In the black-box attack setting, adversaries can only use

limited information to attack machine unlearning models.
Instead of requiring access to the model’s parameters, Ring-A-
Bell (RAB) [98] is a model-agnostic red-teaming framework
and searches adversarial prompts that can reactivate unlearned
concepts through an optimization process using text encoders.

To construct adversarial prompts, RAB extracts the semantic
representation of the target concept c by comparing text
encodings of semantically similar prompt pairs:

ĉ =
1

N

N∑
i=1

(f(P ci )− f(P¬c
i )) , (17)

where f(·) is the text encoder, P c
i is a prompt contain-

ing the concept, and P¬c
i is a concept-neutral counterpart.

The adversarial prompt optimization then modifies an initial
prompt embedding f(P ) by injecting the extracted concept
representation. Thus, RAB bypasses unlearning techniques in
diffusion models effectively.

Based on the black-box adversarial attack, Jailbreaking
Prompt Attack (JPA) [99] exploits vulnerabilities in the
text embedding space of high dimensions. JPA identifies
adversarial prompts using antonym-based contrastive learning.
For a restricted concept c, JPA constructs an embedding
representation by computing the differences between antonym
pairs. The adversarial prompt is then optimized by injecting
this concept embedding into a target prompt pt, T (pr) =
T (pt) + λ · r. JPA optimizes a prefix prompt by maximizing
the cosine similarity between embeddings T (pt) and T (pr)
to project this modified representation back into the discrete
text space. This optimization is performed using the projected
gradient descent method. Since discrete token updates are non-
differentiable, JPA introduces a soft assignment strategy. To
prevent safety checkers from detecting sensitive words, JPA
applies gradient masking, setting high gradient penalties for
restricted tokens vik ← vik−Mk, where Mk is a large penalty
term for sensitive words. The method maintains semantic
fidelity while systematically evading text-based, image-based,
and text-image-based safety filters.

Unlike a model-based attack, DiffZOO [100] is a purely
query-based black-box attack that circumvents safety mecha-
nisms in text-to-image diffusion models. The goal of DiffZOO
is to find an adversarial prompt p∗ that maximizes the prob-
ability of generating an erased concept while only querying
the model. To optimize within the discrete prompt space, Dif-
fZOO introduces Continuous Position Replacement Vectors,
which learn token replacement probabilities. To update these
replacement probabilities, this method employs zeroth-order
optimization to estimate gradient updates without requiring
access to the model. By computing the estimated gradient for
each token replacement, DiffZOO iteratively optimizes the C-
PRV parameters using

zi ← zi − η
∂L

∂zi
, ui,j ← ui,j − η

∂L

∂ui,j
. (18)

DiffZOO demonstrates that T2I diffusion models remain vul-
nerable to black-box query-only adversarial prompting.

C. Defense Strategies

These attack methods demonstrate the limitations of current
unlearning techniques in threat models. Therefore, it is impor-
tant to understand how these limitations can be improved and
to be defensive. To defend against these attacks, Receler [101],
AdvUnlearn [102], Robust Adversarial Concept Erasure
(RACE) [103], AdvAnchor [104], and Domain Correction
(DoCo) [105] use adversarial training to explore defense
machine unlearning strategies from different aspects.
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Receler introduces a concept erasure method employing
additional learnable layers. This approach adds a lightweight
eraser module, which constitutes only 0.37% of the model pa-
rameters, to remove specific concepts from the model outputs.
The method integrates the eraser after each cross-attention
layer in the diffusion U-Net architecture, ensuring precise
manipulation of textual and visual features associated with the
target concept. In particular, the objective is defined as:

LErase = Ext,t
[
∥ϵθ′(xt, ec, t)− ϵE∥2

]
(19)

where ϵE = ϵθ(xt, t) − η [ϵθ(xt, ec, t)− ϵθ(xt, t)] . Receler
ensures two key properties: locality and robustness. Locality
is achieved through concept-localized regularization, and ro-
bustness is reinforced by adversarial learning.

AdvUnlearn executes defense by integrating adversarial
training into the unlearning process, formulating it as a bi-
level optimization problem as shown in Eq. (20):

min
θ

Lu(θ, c∗)

s.t. c∗ = argmin
∥c′−ce∥0≤ϵ

Latk(θ, c
′),

(20)

where c∗ represents the optimal adversarial prompt found by
maximizing the likelihood of regenerating the erased concept,
and Lu is the upper-level unlearning objective. Instead of
fine-tuning the entire diffusion model, AdvUnlearn optimizes
the text encoder using adversarial prompts generated by a
fast attack generation method, which is more effective than
modifying the U-Net.

RACE bridges adversarial perturbations to the concept
erasure process, preventing the reconstruction of unlearned
concepts. It formulates an adversarial perturbation δ that
maximizes the attack success rate.

δ∗ = arg max
∥δ∥≤ϵ

LDM(θ, ce + δ), (21)

where ϵ constrains the magnitude of the perturbation. This
approach ensures that the model does not just forget a spe-
cific concept token and its adversarially derived variations.
The method reduces the attack success rate of red-teaming
techniques and strengthens the integrity of the erased concepts,
increasing the failure rate through prompt engineering.

AdvAnchor introduces an adversarial anchor-based frame-
work to improve the reliability of machine unlearning in text-
to-image diffusion models. AdvAnchor generates adversarial
anchors eadv-anchor by introducing universal perturbations to
the target concept embedding. To ensure that the adversarial
anchor effectively erases the concept, AdvAnchor optimizes
eadv using the adversarial objective. This objective allows the
model to dissociate eadv-anchor from ece by maximizing their
divergence in the noise prediction space.

Based on the anchor concept, DoCo proposes two comple-
mentary components: concept domain correction and concept-
preserving gradient. Through adversarial training, concept
domain correction aligns the distribution of the target concept
c∗ with that of an anchor concept c. A discriminator D
distinguishes between outputs conditioned on c∗ and c, while
the generator (diffusion model) is optimized to fool D. The
concept-preserving gradient is employed to resolve the con-
flicts between the objectives of unlearning and preservation.

Besides adversarial training, Meta-Unlearning [106] in-
troduces an additional meta-objective to enforce long-term
concept forgetting. This method prevents diffusion models

from relearning unlearned concepts after malicious fine-tuning.
Typically, unlearning is formulated as an optimization problem
in which the model forgets concepts from the forgotten set
DF while preserving the performance in the retained set DR.
Meta-unlearning introduces a secondary objective to prevent
such relearning by simulating the fine-tuning process during
unlearning, which is defined as:

Lmeta(θ
F) = −LDM(θ

F;DF)− ζ
(
LDM(θ

F;DR)− LDM(θ;DR)
)
.

(22)
where θF represents the model parameters after fine-tuning on
the forget subset DF. The first term discourages the model
from reducing loss on the forget set after fine-tuning. The
second term ensures that fine-tuning on the forget set degrades
performance on the retain set, causing benign concepts related
to the forget set to self-destruct. Meta-unlearning ensures
that erased concepts remain challenging to recover even after
adversarial attempts by backpropagating through the simulated
fine-tuning process. Therefore, it can prevent reexposure to
the forgotten set from erased knowledge, providing a more
resilient approach to safe and compliant generative models.

Unlike conventional unlearning-based methods that
fine-tune model weights to remove unsafe concepts,
SAFREE [107] is a training-free approach to ensure
safe generation models. SAFREE uses adaptive filtering
mechanisms at both the textual embedding and visual
latent space levels to detect toxic concepts in the input
prompt embedding space. First, it identifies a toxic concept
subspace C, represented as a matrix of unsafe keyword
embeddings. SAFREE computes a residual vector to assess
the conceptual proximity of an input token embedding pi to
this subspace. A larger residual distance indicates a stronger
association with the toxic concept. To suppress unsafe content,
SAFREE integrates a self-validating filtering mechanism that
dynamically adjusts the number of denoising steps based
on the similarity between the filtered and original prompt
embeddings. Additionally, SAFREE extends filtering into
the visual latent space using an adaptive latent re-attention
mechanism. It attenuates unsafe features in the frequency
domain via a spectral filtering operation. Filtering at both
the textual and visual levels provides a strong, adaptive, and
training-free safeguard for responsible generative models.

However, these robust unlearning methods are not meant
to be completely secure, as they are still at risk of emerging
attacks in the arms race.

V. EVALUATION METHODS

This section provides a detailed overview of the evaluation
methods used in unlearning, including metrics and datasets to
evaluate unlearning approaches. Table IV and V provide an
overview of these evaluation metrics and benchmark datasets.

A. Evaluation Metrics

1) Generation Quality: Generation quality metrics evaluate
the realism of the generated data and its fidelity and diver-
sity after unlearning. Frechet Inception Distance (FID) [111],
Kernel Inception Distance (KID) [112], Inception Score
(IS) [113], and Learned Perceptual Image Patch Similarity
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TABLE IV: Overview of different evaluation metrics in machine unlearning for generative models.

Category Metrics Brief Introduction

Generation Quality
FID [111], KID [112], IS [113], LPIPS [114] Measures distribution similarity of two image sets using feature statistics.
CLIPS, CLIPA [115], TIFA [116] Measures alignment between generated images and textual descriptions.
IR [117], VR [118] Measures image quality and coherence using reward models.

Unlearning Effectiveness

GCDS [119] Detecting celebrity likeness in generated images.
ES [86] Quantifies how effectively a concept is erased from the model’s generation.
ICR [78] Measures the ratio of implicit concepts that persist in generations.
CE [75] Likelihood of the erased concept still appearing in generated images.
TFR [71] Target Feature Ratio measures the proportion of removed features in outputs.
ID [120] Evaluates whether erased identities remain in generated images.
MR [80], MS [76] Measures how much the model retains memorized unlearned examples.
PUL [69] Percentage of Un-Learning, indicating the fraction of successful forgetting.
LHR [85] Measures how effectively harmful concepts are removed based on LLM.
WD [121] Weight distance between the retrain models and other unlearned models.
UA, RA, TA [122] Measures overall performance of classification tasks on different classes.
AUC [123] Measures classification performance over thresholds.

Efficiency and Security

UT, RTE [77] Computational efficiency of unlearning methods.
MIA [124] Membership Inference Attack success rate, assessing data privacy risk.
ASR [125] Measures percentage of adversarial attacks recovering unlearned content.

Subjective Evaluation
VC [15] Side-by-side visual comparisons of pre- and post-unlearning outputs.
QA [84] Qualitative assessment of image differences before and after unlearning.
ME [85] Human assessment of image generation quality and concept removal.

(LPIPS) [114] measure the distribution similarity of two image
sets using feature statistics to quantify image realism. CLIP
Score (CLIPS) and CLIP Accuracy (CLIPA) [115], along with
Text-to-Image Faithfulness evaluation with Question Answer-
ing (TIFA) [116], evaluate the alignment between the gener-
ated images and the textual descriptions, ensuring semantic
consistency. Image Reward (IR) [117] and Vision Reward
(VR) [118] use reward models to measure image quality and
coherence.

2) Unlearning Effectiveness: These metrics assess the ef-
fectiveness of unlearning techniques in removing targeted
concepts from generated images. Giphy Celebrity Detection
Score (GCDS) [119] detects the presence of celebrity likeness
in generated images. Erasure Score (ES) [86], Implicit Concept
Ratio (ICR) [78], and Classifier Entropy (CE) [75] evaluate
how effectively a concept is erased from the model’s output
and determine the likelihood of erased concepts reappearing
in generated images. Target Feature Ratio (TFR) [71] and
similarity of identities (ID) [120] measure the extent to which
specific features or identities remain in unlearned images.
The Memorization Rate (MR) [80] and the Memorization
Score (MS) [76] assess how much the model retains un-
learned examples. The Percentage of Un-Learning (PUL) [69]
quantifies the fraction of successful forgetting. LLM-based
Harm Rate (LHR) [85] evaluates the effectiveness of remov-
ing harmful concepts using LLM analysis. Weight Distance
(WD) [121] computes the deviation between retrained models
and unlearned models. Unlearning Accuracy (UA), Remaining
Accuracy (RA), and Testing Accuracy (TA) [122] measure
the classification accuracy across different classes. Area Under
Curve (AUC) [123] assesses classification performance across
various thresholds.

3) Efficiency and Security: These metrics focus on the
computational efficiency and security risks associated with
unlearning methods. Unlearning Time (UT) and Retraining

Efficiency (RTE) [77] measure the computational efficiency
of unlearning techniques. The Membership Inference Attack
(MIA) [124] evaluates the success rate of Membership Infer-
ence Attacks, assessing the risk to data privacy. Attack Success
Rate (ASR) [125] measures the attack success rate, indicating
the percentage of adversarial attacks that recover unlearned
content.

4) Subjective Evaluation: Subjective evaluation metrics in-
volve human assessments to ensure the visual and conceptual
effectiveness of unlearning. As mentioned in [84], quantitative
analysis can not always reflect the unlearning performance.
Thus, qualitative analysis is essential to provide another as-
sessment of generation differences before and after unlearning.
The most common metric for this part is the visual comparison
(VC) [15], which refers to side-by-side comparisons of gen-
erated images from pre- and post-unlearning outputs. In [85],
the Manual Evaluation (ME) is used for human evaluation of
image generation quality and concept removal effectiveness.

B. Benchmark Datasets

Machine unlearning in generative models is often evaluated
using specific tasks in the following datasets.

1) Object Generation Datasets: In the model training,
object generation datasets provide diverse categories of images
for generation models to learn the distribution of different
classes. Typically, these datasets are utilized in unlearning
tasks to assess the model’s performance in unlearning objects
or classes. MNIST [126] is a handwritten digit dataset widely
used for benchmarking classification models. SVHN [127] is
a dataset of street view house numbers used primarily for digit
recognition tasks. CIFAR [128], which includes CIFAR-10
and CIFAR-100, consists of small object images with different
categories. STL [129] is a high-resolution variant of CIFAR-
10, offering a higher-quality alternative for evaluating the
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TABLE V: Overview of different benchmark datasets in machine unlearning for generative models.

Category Dataset Brief Introduction

Object Generation Datasets

MNIST [126] Handwritten digit dataset used for classification tasks.
SVHN [127] Street View House Numbers dataset for digit recognition.
CIFAR [128] Small object classification dataset (CIFAR-10, CIFAR-100).
STL [129] High-resolution variant of CIFAR-10 for classification.
Places-365 [130] Scene recognition dataset for classification tasks.
ImageNet [131], [132] Large-scale image classification dataset with diverse categories.

Identity Recognition Datasets
CelebA [133] Large-scale dataset for celebrity face recognition.
FFHQ [122] High-quality face dataset used in generative model training.
AFHQ [134] Animal face dataset for generative modeling and unlearning.

Generative & Artist Style Datasets
MSCOCO [135] Large dataset with text-image pairs used for captioning and generation.
LAION [136], [137] Large-scale open-source text-image dataset for training models.
WIKIArt [138] Artistic style dataset used for evaluating style removal and unlearning.

Unlearning-Specific Datasets
I2P [74] Dataset containing NSFW or biased image prompts for unlearning safety.
ICD [78] Dataset designed for testing implicit concept unlearning.
UnlearnCanvas [139] Dataset specifically designed for evaluating machine unlearning techniques.

classification model. Places-365 [130] is a scene recognition
dataset designed for classification tasks. ImageNet [131] is a
large-scale dataset comprising diverse image categories and
serves as a standard benchmark for evaluating deep learning
models. Imagenette [132] is a smaller subset of ImageNet that
enables quick testing of unlearning methods.

2) Identity Recognition Datasets: Identity recognition
datasets are commonly used to evaluate unlearning methods
that focus on removing or modifying identity-related features
in generated images. CelebA [133] is a large-scale dataset
containing celebrity faces, frequently used for face recognition
and attribute classification. FFHQ [122] provides high-quality
human face images and serves as a key dataset for training and
evaluating generative models. AFHQ [134] contains images
of animal faces, making it worthwhile to evaluate identity re-
moval and domain adaptation techniques in generative models.

3) Generative & Artist Style Datasets: Datasets in this
category are used to evaluate the effectiveness of unlearning
generative content and artistic styles. Here, generative content
specifically refers to the use of text prompts to generate im-
ages. MSCOCO [135] contains text-image pairs and is widely
used for captioning and generation tasks. LAION [136], [137]
is an open-source large-scale dataset that contains a vast
collection of text-image pairs, providing a valuable resource
for training and evaluating generative tasks. WIKIArt [138] is
a large dataset of artistic paintings commonly used for tasks
such as style transfer, style removal, and training generative
models.

4) Unlearning-Specific Datasets: These datasets are de-
signed to evaluate the effectiveness of machine unlearning
techniques in removing specific concepts from the generated
output. The Inappropriate Image Prompts dataset [74] con-
sists of NSFW or biased image prompts, making it suitable
for studying safety-focused unlearning. The Implicit Concept
Dataset [78] is created to test the removal of implicit concepts
embedded in models. UnlearnCanvas [139] is a dataset specifi-
cally designed to benchmark unlearning performance, offering
customized challenges to evaluate different techniques.

VI. APPLICATIONS

Machine unlearning can address critical concerns related to
copyright protection, bias alleviation, and safety alignment,
which underscore the importance of deploying ethical, legal,
and responsible generative AI models. The applications are
summarized in Table III with a feature demonstration.

A. Copyright Protection

Copyright protection is essential in generative models due to
the risks associated with unauthorized reproduction, potential
legal liability, and ethical issues related to intellectual property
(IP). These models, trained on vast datasets that often con-
tain copyrighted material, can generate images that closely
resemble protected content, including artistic styles, logos,
and celebrity likenesses, potentially leading to infringement.
This phenomenon raises legal and ethical concerns, as AI-
generated content can devalue original works and result in
lawsuits against AI developers and users. Additionally, busi-
nesses and creators face reputational risks if their AI-generated
outputs inadvertently violate copyrights. To address these
concerns, researchers have introduced some novel machine
unlearning methods [18], [73]–[82], [91]–[93]. These methods
can selectively erase copyrighted concepts from generative
models without degrading overall performance by redirecting
the model from generating protected content, allowing it to
revert to alternative representations learned during training.
For example, the techniques efficiently erase specific styles
(e.g., Van Gogh paintings) or characters (e.g., Mickey Mouse).
Therefore, it prevents the unauthorized generation of protected
content while maintaining general image synthesis capabilities.

B. Bias Alleviation

Bias alleviation in generative models is essential to prevent
the amplification of societal stereotypes, the underrepresenta-
tion of marginalized groups, and ethical concerns related to AI-
driven discrimination. These models [74], [140]–[143] often
learn biases from large-scale datasets, resulting in skewed
outputs such as male-dominated depictions of leadership roles
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or racially biased portrayals in law enforcement contexts.
These biases not only harm fairness and inclusion, but also
have sustained consequences in media representation, hiring
tools, and digital marketing [144]. Biased output can violate
anti-discrimination laws or platform guidelines, particularly in
high-stakes contexts such as healthcare and education. Users
and stakeholders increasingly demand algorithmic fairness in
generative models to maintain trust and prevent reputational
damage.

To address this, bias mitigation techniques [91]–[93] aim to
modify the internal associations of the model, thus ensuring
more diverse and equitable content generation. Many of these
approaches aim to strike a balance between fairness and
preserving image quality or creative freedom. Looking ahead,
user-centered bias correction, where users can flag or adjust
biased outputs, may become a key direction for the responsible
deployment of generative AI.

C. Safety Alignment

Aligning generative models with safety standards, partic-
ularly in filtering NSFW content, is vital to ensure ethical
deployment, avoid legal liabilities, and protect user welfare
across platforms and devices. Google published a report on
the adversarial misuse of generative AI [145], calling for
pressing attention to the security threats posed by such models.
Without adequate safeguards, generative models [94]–[97]
risk producing explicit or harmful content, which can violate
community guidelines, age restrictions, or national content
regulations such as GDPR or CCPA.

Recent methods [18], [146]–[150] propose to remove harm-
ful concepts at the model level by fine-tuning, reinforcement
learning, or encoder pruning, so that prompts cannot trigger
them. These solutions help align models with regulatory
frameworks and platform accountability, especially in public-
facing or IoT-driven applications. However, future research
must also consider the ethical transparency and explainability
of these safety filters to ensure that suppression decisions are
not arbitrary, biased, or overly opaque to end users.

VII. CHALLENGES AND FUTURE WORKS

Despite significant advances in machine unlearning tech-
niques, applying these methods to generative models, such as
diffusion models, presents several challenges. The following
discussion identifies critical issues and provides information
on potential research directions and opportunities to advance
the field further.

A. Robust Unlearning

A major challenge in generative model unlearning is achiev-
ing robust unlearning to ensure that erased concepts cannot
be recovered under adversarial prompts, distribution shifts,
or fine-tuning. Current methods [94]–[97], such as modifying
attention layers or latent representations, may leave residual
traces of the removed concept, making them vulnerable to
prompt engineering attacks or inversion techniques that recon-
struct forgotten knowledge. Recent studies [96], [98], [102]

demonstrate that adversarially crafted text inputs can bypass
unlearning mechanisms, forcing models to regenerate content
that was supposed to be erased. Techniques such as adversarial
training have been proposed to enhance robustness, but these
methods often face a tradeoff between the effectiveness of
unlearning and maintaining generation quality. Future work
should focus on adversarially robust unlearning mechanisms,
such as incorporating certifiable removal techniques, self-
supervised feedback loops, and meta-learning approaches that
adaptively refine the model after unlearning. Additionally,
integrating diffusion model interpretability techniques can
help analyze how unlearning affects the generative process
at different denoising stages, leading to more effective and
verifiable concept erasure.

B. Balancing Utility and Privacy

With increasing integration of generative models into IoT
environments, privacy and security concerns [20], [21], [151]
become even more pronounced due to the extensive collection
and use of sensitive and environmental data. If attackers
steal and misuse this information, they can deploy generative
models to reconstruct realistic data from individuals without
their consent, posing threats to personal privacy, identity theft,
and the dissemination of misinformation. However, to defend
against this evasion, unlearning methods should also strike a
balance between removing unlearned concepts and preserving
generation quality for utility. To address this, researchers in-
troduce methods like GUIDE to enable identity removal from
pre-trained generative models. These functions effectively
erase a specific identity while preserving the model’s general
generative capabilities, ensuring stronger privacy protection in
AI-generated content while maintaining model performance.
However, straightforward unlearning approaches [102], such
as fine-tuning or parameter editing, often result in degraded
generation quality for benign concepts, raising concerns about
utility loss. Achieving this balance requires further investi-
gation of regularization techniques and modular optimization
strategies, such as focusing on text encoders rather than the
entire model architecture.

C. Evaluation and Benchmarking

Current evaluation metrics for text-to-image model unlearn-
ing are insufficient and inconsistent, often relying on qualita-
tive comparisons or indirect similarity measures such as CLIP-
based retrieval. Existing metrics primarily focus on generation
quality or safety in non-adversarial scenarios, which fail to
capture the robustness of models under adversarial conditions.
Tools [96], [98] such as Ring-A-Bell and UnlearnDiffAtk
offer promising directions, but require further standardization
and widespread adoption. However, systematic and reliable
evaluation frameworks for assessing the efficacy of unlearning
methods are still lacking. Future work should establish stan-
dardized benchmarks for unlearning performance, measuring
both removal effectiveness (e.g., how well the erased concept
is suppressed across diverse prompts) and model integrity (e.g.,
whether unrelated content generation remains unaffected).
Novel evaluation methods could include counterfactual testing
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frameworks, adversarial prompting techniques to detect resid-
ual knowledge, and user perception studies to assess whether
unlearning aligns with real-world expectations. In addition,
designing scalable automated metrics, such as concept purity
scores or entropy-based divergence from the original model,
would enable more objective and reproducible evaluations of
unlearning techniques in content generation scenarios.

D. Theoretical Analysis

Solid work in machine unlearning for text-to-image mod-
els requires a steady theoretical foundation to quantify and
formalize unlearning efficiency, convergence, and guarantees.
Current approaches often rely on heuristic-based optimiza-
tion without rigorous mathematical proofs on whether the
unlearned concept is permanently removed or suppressed.
Developing provable bounds on unlearning effectiveness, such
as information-theoretic measures of concept removal, privacy
guarantees under differential privacy frameworks, or adver-
sarial testing to detect residual knowledge, would provide a
stronger theoretical foundation and more convincing results.
Additionally, exploring connections to catastrophic forgetting
in continual learning could lead to a deeper understanding of
how selective unlearning affects model generalization, ensur-
ing that erasing one concept does not unintentionally degrade
unrelated knowledge.

E. Ethical and Social Implications

Beyond technical considerations, machine unlearning in AI-
generated content raises profound ethical and social concerns.
Central to these concerns is the tension between individual
data rights and public accountability. Users may request the
removal of their data or associated concepts, but this must be
balanced against the public interest and the need for historical
preservation. For example, attempts to unlearn politically
sensitive content could be used to selectively erase critical nar-
ratives, posing risks of censorship and historical revisionism.
A notable case is the controversy surrounding the Stability AI
opt-out program, which allowed artists to remove their work
from the training data [47]. Although this was seen as a step
toward respecting the rights of creators, some critics noted a
lack of transparency and accountability in the verification and
implementation of these requests. Similarly, OpenAI has been
under scrutiny for how it moderates and forgets controversial
or copyrighted information in ChatGPT [152], especially under
pressure from authors and publishers who have filed lawsuits
demanding the removal of proprietary content.

Moreover, unlearning itself can unintentionally introduce or
amplify model biases if not applied uniformly in different
data domains [102], [153]. If certain groups disproportionately
request removals (e.g., due to higher privacy concerns), this
could lead to representational imbalances in model behav-
ior, ultimately affecting fairness in generated output. These
challenges underscore the need for governance frameworks
that integrate both technical and ethical oversight. Moreover,
transparent deletion protocols, audit mechanisms, and cross-
disciplinary collaboration are critical to ensure that machine
unlearning is conducted responsibly. Future research should

actively engage with this tradeoff between society and tech-
nology to enable ethical deployment of unlearning systems.

VIII. CONCLUSION

Machine unlearning in generative models is an imperative
and rapidly evolving field to address several critical concerns.
The comprehensive survey explores various unlearning meth-
ods and categorizes the literature based on their unlearning
techniques, adversarial attacks, and the corresponding de-
fenses. In addition, a variety of evaluation metrics, bench-
marking datasets, and critical applications are presented, along
with a thoughtful discussion for future researchers. Finally, we
discuss the future challenges and research directions in this
field and beyond, to explore the research frontier of machine
unlearning and contribute to the research community in this
field. In conclusion, this survey will serve as a helpful recipe
for any interested party embarking on artificial intelligence,
machine unlearning, generative models, and security & privacy
related topics.
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