
Exact-Fun: An Exact and Efficient Federated
Unlearning Approach

Zuobin Xiong∗, Wei Li†, Yingshu Li† and Zhipeng Cai†
∗Department of Computer Science, University of Nevada, Las Vegas, NV
†Department of Computer Science, Georgia State University, Atlanta, GA

∗ zuobin.xiong@unlv.edu; † {wli28, yili, zcai}@gsu.edu

Abstract—Machine unlearning is an emerging need that aims
to remove the influence of deleted data from a learned model in
a timely manner. Thus, unlearning is important for the privacy
and security in data management. Nevertheless, existing machine
unlearning methods fail to perform exactly and efficiently in
federated setting. In this paper, we study the unlearning problem
in federated learning, which provides a data deletion mechanism
in the federated setting. First of all, a quantized federated learn-
ing (Q-FL) algorithm is developed to facilitate exact unlearning.
Based on the quantized federated learning system, an exact and
efficient federated unlearning (Exact-Fun) algorithm is designed
to realize the goal of data deletion. Through theoretic analysis
and experimental evaluation, our proposed methods not only have
desired unlearning effectiveness but also achieve high unlearning
efficiency compared with the existing works.

Index Terms—federated learning, machine unlearning, privacy
and security, database management

I. INTRODUCTION

As well known, to advance the performance of machine
learning models, a sufficient amount of data is indispens-
able to be collected from users and/or third parties. For
examples, popular computer vision models are trained on
images and videos posted by Facebook and Flickr users [31],
many natural language processing models are trained on
Amazon reviews [27], and micro-video recommendation sys-
tems are trained on Tiktok user data [23]. In a num-
ber of real applications, users provide their data to the
service providers/platforms for model development in ex-
change of better service quality. Meanwhile, to protect users’
data privacy, the “Right To Be Forgotten” is enforced by
some regulations, such as General Data Protection Regu-
lation (GDPR) [37] and California Consumer Privacy Act
(CCPA) [35]. For instance, a user wants to delete part of search
history, and a hospital requests to remove some patients’
data. In these scenarios, a practical and crucial question is
that when users request to remove data from the services or
platforms, what should the service providers do?

A straightforward method to deal with users’ data removal
requests is to delete the users’ data from the databases.
However, due to the memorization of machine learning mod-
els [34], the information of training data is memorized in
model parameters and cannot be forgotten easily. Moreover,
such naive data deletion can be explored by malicious attackers
to infer users’ private information in various ways, including
model inversion attack [10], membership inference attack [20],

reconstruction attack [12], etc. Therefore, how to correctly and
completely remove users’ data from the learned models has
become a challenging problem for data management.

The rightful data removal in machine learning context,
termed as “machine unlearning” [6], requires deleting data
from training datasets as well as the impact of data in the
learned models. Intuitively, retraining the machine learning
models from scratch on the remaining databases sans the
deleted data is a simple way to achieve unlearning objective,
but full computation cost of retraining may not be affordable,
especially on the models with millions of parameters [9]. Thus,
designing a computation-efficient and time-saving unlearning
method is the core focus of current machine unlearning works.
So far, there are only a few works on machine unlearning but
with different limitations, such as simple learning methods
(linear regression [18], [22]), model-dependent methods (de-
cision tree [5] and k-means cluster [13]). Besides, existing
research on federated learning (FL) mainly focuses on im-
proving unlearning efficiency with approximate unlearning but
overlooks model utility (e.g., model accuracy) after unlearning,
which harms the performance of unlearned models.

Inspired by the limitations of existing unlearning methods,
in this paper, we aim at designing an exact and efficient fed-
erated machine unlearning method in model-agnostic manner.
First, to enable exact federated unlearning, we utilize the idea
of α-quantization [17] to improve the stability of federated
model and propose our quantized federated learning (Q-FL)
algorithm, through which the quantized federated model can
maintain unchanged before and after data deletion. More
importantly, the quantized federated model and the model
retrained from scratch on the remaining databases could be
the same with a high probability, so that there is no need to
retrain from scratch as long as the stability is held. Based
on the quantized federated model, we design an exact and
efficient federated unlearning (Exact-Fun) algorithm that also
can achieve decent unlearning efficiency and good model
utility after unlearning. We highlight the contributions of this
paper as follows:

• To the best of our knowledge, this paper is the first
work to investigate the exact federated unlearning in
FL, which can be extended to different machine learning
models (model agnostic).

• The quantized federated unlearning (Q-FL) algorithm is
designed to enable exact federated unlearning with the

guarantee of model convergence.
• The exact and efficient federated unlearning (Exact-Fun)

algorithm is proposed to process users’ data deletion
requests with proved unlearning efficiency.

• Both our Q-FL and Exact-Fun algorithms are evaluated
on real datasets via intensive experiments, which validate
the effectiveness and efficiency of our proposed algo-
rithms compared with state-of-the-art.

This paper is organized as follows. The related works and
the preliminaries are introduced in Section II and Section III,
respectively. In Section IV, we detail our methodology. Then,
our proposed algorithms are evaluated in Section V. Finally,
we give a conclusion in Section VI.

II. RELATED WORKS

Existing works on unlearning can be categorized into two
branches, i.e., exact unlearning and approximate unlearning,
according to their efficiency and effectiveness.

Exact unlearning requires the distribution of unlearned
model parameters should be exactly same as the distribution of
model parameters that are retrained on the dataset without the
deleted data. Since this requirement is hard to be achieved in
complicated models, most exact unlearning strategies are de-
signed on simple learning models. [6] first designed unlearning
algorithms for statistical query based learning models, such
as Naive Bayesian classifier and SVM, where the strategies
are used to maintain model statistics at learning stage and
update parameter information when unlearning data comes.
Then, Ginart et al. [13] proposed the first unlearning method
for unsupervised learning k-means cluster algorithm, which
adopts stability and divide-and-conquer to improve unlearn-
ing efficiency. In [4], a SISA framework was designed to
reduce unlearning time through sharding, isolation, slicing,
and aggregation, of which the idea is to split a dataset to
small parts so that the retraining time is reduced. Similarly,
Aldaghri et al. [1] adopted ensemble learning to split training
dataset into disjoint shards by coding matrix. When unlearning
is performed, the unlearned data is removed from coded
shards, and the corresponding model is retrained. Following
this, [5], [32] conducted unlearning algorithms on random
forests algorithm, where they used a similar idea to adjust
the structure of decision tree such that the retrained subtree
can be minimized. In the above works, the exact unlearning
strategies realize the unlearning requirement by retraining a
part of models, which can guarantee unlearning effectiveness
but reduce unlearning efficiency.

On the contrary, approximate unlearning prefers unlearning
efficiency to unlearning effectiveness. Different from exact
unlearning, the distribution of approximately unlearned model
parameters is similar to the distribution of retrained model pa-
rameters with less unlearning time. Instead of retraining a part
of model, approximate unlearning methods perform a post-
processing on the learned models to obtain an approximation
of the fully retrained models. In the research of [16], [40], [41],
authors used similar idea to achieve approximate unlearning by
updating the trained model with stored gradients when certain

data points are removed. Neel et al. [29] and Ullah et al. [36]
imported statistical indistinguishability and algorithm stability
respectively to unlearn data via gradient descent with provable
approximation. To cover the adversarial scenario where a user
deliberately deletes data under specific distribution, Gupta et
al. [19] proposed adaptive machine unlearning that can handle
arbitrary model classes and training methodologies. On the
other hand, the authors of [18], [33] proposed differentially
private data removal mechanisms, which can unlearn data
from the learned model by hessian matrix, and Golatkar and
Wang [14], [38] focused on unlearning a specific class label
from deep networks. Considering the computational cost of
hessian matrix, Izzo et al. [22] found a sublinear algorithm
to speed up unlearning from linear models efficiently. In
another branch, a few probability-based unlearning methods
were utilized to solve approximate unlearning under federated
settings with Bayesian [8], [15] and Monte Carlo [30]. To sum
up, approximate unlearning runs faster than exact unlearning
but fails to improve model utility after unlearning. Therefore,
it is challenging to design an exact and efficient federated
unlearning method because it is still an open problem.

III. PRELIMINARY

As an advanced distributed learning paradigm, FL allows a
set of distributed clients K = {1, 2, . . . ,K} to collaboratively
learn a global model on the federated server using their own
local dataset Dk (k ∈ K). In Dk, each data instance is
represented by (x, y), where x ∈ X , X is the feature space of
training data, y ∈ Y , and Y is the set of ground truth labels.
In a federated learning system, all the clients’ local databases
together form a global database D =

⋃
k∈K Dk. During each

training iteration t, the goal of each local client k in the system
is to minimize a loss function as shown in Eq. (1).

Lk(w
t
k) =

1

|Dk|
∑

(x,y)∈Dk

l(wt
k, (x, y)), (1)

where Lk is the loss function of client k, wt
k is the model

parameter of client k at iteration t, |Dk| is the size of Dk,
and l(wt

k, (x, y)) is the loss of model wt
k on instance (x, y).

Then, the clients’ local models are uploaded to the server for
aggregation, and the federated model parameter wt of iteration
t is calculated via FedAvg algorithm [28].

wt =
∑
k∈K

|Dk|
|D| w

t
k. (2)

According to the loss function of local clients and the aggrega-
tion algorithm, the optimization objective of federated learning
system can be formulated as Eq. (3).

min
wt∈W

L(wt) =
∑
k∈K

|Dk|
|D| Lk(w

t), (3)

where W ∈ Rd is the d-dimension hypothesis space of model
parameters. In a nutshell, a federated learning algorithm can
be defined to be A : D → W , which takes D =

⋃
k∈K Dk

as the input and outputs the federated model parameter wt

belonging to W as depicted in Fig. 1.
In this paper, we make assumptions on the FL system as

existing works, which can facilitate our analysis.

𝑤𝑤1𝑡𝑡
𝑤𝑤2𝑡𝑡 𝑤𝑤𝐾𝐾𝑡𝑡

𝑤𝑤𝑡𝑡 𝑤𝑤𝑡𝑡 𝑤𝑤𝑡𝑡

Dataset D3Dataset D2
Dataset D1 Dataset DK

Server Aggregation

�

𝑤𝑤𝑡𝑡

Fig. 1: The system framework of federated learning.

1) (Bounded and Unbiased Gradient) ∀w ∈ W , the stochas-
tic gradient ∇Lk(w) has an upper bound G and is an
unbiased estimator of federated loss function’s gradient
∇L(w) [21], [24]:

∥∇Lk(w)∥ ≤ G, ∇L(w) = E{∇Lk(w)} (4)

2) (Lipschitz Continuous Gradient) ∀w,w′ ∈ W , the gra-
dient of the loss function Lk(·) is Lipschitz continuous
with µ > 0 [24], [39]:

∥∇Lk(w)−∇Lk(w
′)∥ ≤ µ∥w − w′∥. (5)

3) (Strong Convexity) ∀w,w′ ∈ W , the loss function
l(·, (x, y)) is strongly convex with τ > 0 [24], [39]:

l(w, (x, y)) ≥ l(w′, (x, y))+∇l(w′, (x, y))⊤(w − w′)

+
τ

2
∥w − w′∥2, (6)

where ⊤ is the transpose operation.
These assumptions are practical for common loss functions

such as mean square error and cross entropy loss in machine
learning.

IV. EXACT FEDERATED UNLEARNING

A. Problem Formulation

After an FL model is trained on the given training dataset,
the model parameters are fixed and can be deployed for use
in applications. When client j ∈ K would like to erase his/her
data Uj ⊂ Dj (|Uj | = m < |Dj |) from the trained federated
model, he/she could submit an unlearning request to the server.
Particularly, the clients hold disjoint private datasets locally,
so the unlearned data submitted by each one is different.
Besides the federated model, the federated learning algorithm
A produces a set of meta-data M that is not necessarily
used during prediction but useful in the unlearning procedure
for computing gradients and intermediate results and other
purposes. Accordingly, an unlearning algorithm can be defined
as A u : (A (D),Uj ,M) → W , which takes the trained model
A (D), the unlearning dataset Uj , and the meta-data M as the
inputs to update an unlearned model.

To process an unlearning request, Uj should be deleted
from Dj (and D), and the influence of Uj should be revoked
from the trained federated model. Moreover, a successful exact
unlearning algorithm should guarantee: (i) the unlearning cost
(e.g., time and computation) is less than the cost of training

from scratch on the remaining dataset Du = D \ Uj ; and (ii)
the distribution of unlearned model parameter is the same as
the distribution of model parameters trained from scratch on
Du. We give its definition in Definition 1.

Definition 1. (Exact Federated Unlearning) Given an FL
algorithm A :D → W with clients set K, and an unlearn-
ing request Uj (j ∈ K), the unlearning algorithm A u :
(A (D),Uj ,M) → W can exactly unlearn Uj from A (D)
if

Pr[A u(A (D),Uj ,M) ∈ W] = Pr[A (Du) ∈ W].

The definition means that the probability distributions of
unlearned model and the retrained model are equal.

B. Quantization of Federated Learning

In the FL system, when the dataset Uj is deleted from Dj

and D per client j’s unlearning request, there may be changes
in the final trained federated model. That is, the change of local
user’s dataset usually have influence on the trained model.
As a result, it is hard to guarantee the exact equivalence
on distribution between the unlearned model and the model
trained from scratch on Du as required in Definition 1. To
overcome this challenge, stabilizing the FL algorithm becomes
necessary to enable exact unlearning. In other words, the
trained federated model is expected to have certain stability
with respect to the local dataset, so that small changes on
the local dataset should only cause a small or no change
on the distribution of trained federated model parameters. In
our problem, when a dataset Uj is requested to be unlearned,
the trained federated model should not change too much. If
such changes can be evaluated efficiently during the unlearning
stage, we can achieve the exact unlearning efficiently.

The way to reach stability in federated learning is quantiza-
tion [17], where the aggregated parameters of the federated
model are quantized to a discrete vertex in the hypothe-
sis space of model parameters. The quantization operation
q(α,wt) = ŵt can map its continues input value wt to a
discrete value ŵt, which is expressed as follows:

ŵt = α · z∗, s.t. z∗ = arg min
z∈Zd

∥wt − α · z∥2, (7)

where Zd is the d-dimensional integer space. For instance, in
1-dimension, q(α = 0.1, wt = 0.62) maps wt=0.62 to ŵt=0.6,
which is like a rounding operation; and in 2-dimension, q(α =
0.5, wt = [1.1, 2.7]) maps wt to the closest α vertex ŵt =
[1.0, 2.5].

By applying quantization, we first propose the quantized
federated learning (Q-FL) algorithm as presented in Algo-
rithm 1 to enable exact unlearning and then demonstrate our
exact and efficient unlearning algorithm to unlearn a dataset
Uj . At the beginning of Q-FL, the server initializes model
parameter w0. The initialization is passed through quantization
function q(α, ·) to get the quantized model ŵ0, which is then
distributed to all participated clients as their local models
for computing ClientUpdate(·). The operation of clients is
the same as that in the original FL described in Section III,

Algorithm 1 Quantized Federated Learning (Q-FL)
Input: the number of iterations T , the number of clients K, learning
rate η, the granularity of quantization α
Output: quantized federated model ŵT

1: Server executes: initialize ŵ0 = q(α,w0)
2: for iteration t = 0 to T do
3: for client k ∈ K in parallel do
4: wt+1

k ← ClientUpdate(k, ŵt)
5: end for
6: wt+1 ←

∑
k∈K

|Dk|
|D| w

t+1
k

7: ŵt+1 = q(α,wt+1)
8: save wt+1 and ŵt+1 on server; // as meta-data
9: end for

10: return ŵT

11: ClientUpdate(k, ŵt): // run on each client
12: compute gradient ∇Lk(ŵ

t) for Dk

13: update local model wt+1
k ← ŵt − η∇Lk(ŵ

t)
14: upload model wt+1

k to server.

including computing gradients, updating local models, and
uploading their updated local models to the server. After the
server receives local updates and performs aggregation, a new
federated model wt+1 is obtained. Next, quantization function
is executed in Line 7 on the federated model wt+1 to get
the quantized model parameter ŵt+1 = q(α,wt+1). Both the
original federated model wt+1 and the quantized federated
model ŵt+1 are stored on server as meta-data M.

It is worth noticing that through quantization at server in
each iteration t, the quantized federated model become stable
as a constant with a high chance with respect to unlearning
small datasets (proved in Theorem 2). Thus, Uj can be easily
unlearned from the quantized FL model without complex re-
computation and communication. Besides, the proposed Q-
FL algorithm can not only support exact unlearning, but also
preserve the model utility and convergence even if quantization
operation disturbs its parameters. Hereafter, we first state a
Lemma 1 and then use it to prove the convergence bound of
proposed quantized federated learning (Q-FL) algorithm.

Lemma 1. In the Q-FL of Algorithm 1, the loss value of
quantized FL model between t-th iteration and (t + 1)-th
iteration is bounded by the following inequality:

E{L(ŵt+1)− L(ŵt)} ≤ β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2},
(8)

where β1 = −η + µη2

2 and β2 = µ
2 .

Proof. The quantization function ŵt = q(α,wt) essentially
is a random noise perturbation. In each dimension of wt, a
random noise with uniform distribution U(−α

2 ,
α
2) is added,

which makes ŵt be a perturbed result of wt. Therefore, we
have ŵt = q(α,wt) = wt +N t and obtain Eq. (9).

ŵt = wt +N t =
∑
k∈K

|Dk|
|D| w

t
k +N t, (9)

where N t ∼ U(−α
2 ,

α
2) is the noise added in iteration t.

According to the training process of gradient descent method,
the local model of each client k is updated as

wt+1
k = ŵt − η∇Lk(ŵ

t). (10)

By combining Eq. (9) and Eq. (10), ŵt+1 can be obtained:

ŵt+1 =
∑
k∈K

|Dk|
|D| (ŵ

t − η∇Lk(ŵ
t)) +N t+1. (11)

Since the gradient of loss function Lk(w) is Lipschitz con-
tinuous (see assumption (2)), the loss function Lk(w) is
convex [2], [3]. We can construct a new convex function
g(w) = µ

2w
⊤w−Lk(w) [43] and obtain its gradient ∇g(w) =

µw −∇Lk(w). Because of the convexity of g(w), there is

g(ŵt+1) ≥ g(ŵt) +∇g(ŵt)⊤(ŵt+1 − ŵt). (12)

By substituting g(w) = µ
2w

⊤w−Lk(w) into Eq. (12), we get
Eq. (13).

µ

2
ŵt+1⊤ŵt+1 − Lk(ŵ

t+1)

≥µ

2
ŵt⊤ŵt − Lk(ŵ

t) + (µŵt −∇Lk(ŵ
t))⊤(ŵt+1 − ŵt). (13)

By rearranging the above equation, we can have

Lk(ŵ
t+1)− Lk(ŵ

t)

≤∇Lk(ŵ
t)⊤(ŵt+1 − ŵt)

+
[µ
2
ŵt+1⊤ŵt+1 − µ

2
ŵt⊤ŵt − µŵt⊤(ŵt+1 − ŵt)

]
≤∇Lk(ŵ

t)⊤(ŵt+1 − ŵt) +
µ

2
∥ŵt+1 − ŵt∥2. (14)

From the assumption (1), the gradient is bounded and unbi-
ased, so Eq. (15) is obtained by taking expectation at both
sides of Eq. (14).

E{L(ŵt+1)− L(ŵt)} ≤E{∇L(ŵt)⊤(ŵt+1 − ŵt)}

+
µ

2
E{∥ŵt+1 − ŵt∥2}. (15)

To estimate the upper bound of the right side in Eq. (15), we
need to bound two items: ŵt+1− ŵt and ∥ŵt+1− ŵt∥2. From
Eq. (9), the difference between ŵt+1 and ŵt is computed as
follows:

ŵt+1 − ŵt =
∑
k∈K

|Dk|
|D|

[
ŵt

k − η∇Lk(ŵ
t)
]
+N t+1 − ŵt

=ŵt − η
∑
k∈K

|Dk|
|D| ∇Lk(ŵ

t) +N t+1 − ŵt

=− η
∑
k∈K

|Dk|
|D| ∇Lk(ŵ

t) +N t+1

=− η∇L(ŵt) +N t+1. (16)

Then, for ∥ŵt+1 − ŵt∥, we have

∥ŵt+1 − ŵt∥ =∥ − η∇L(ŵt) +N t+1∥ (17)

≤∥η∇L(ŵt)∥+ ∥N t+1∥.

Based on Eq. (16), Eq. (17), and Eq. (15), we can have

E{L(ŵt+1)− L(ŵt)}

≤E{∇L(ŵt)⊤(ŵt+1 − ŵt)}+ µ

2
E{∥ŵt+1 − ŵt∥2}

≤E{∇L(ŵt)⊤(−η∇L(ŵt) +N t+1)}

+
µ

2
E{(∥η∇L(ŵt)∥+ ∥N t+1∥)2}

=E{−η∥∇L(ŵt)∥2 + (∇L(ŵt)⊤N t+1)}

+
µ

2
E{η2∥∇L(ŵt)∥2 + 2η∥∇L(ŵt)∥∥N t+1∥+ ∥N t+1∥2}

=− ηE{∥∇L(ŵt)∥2}+ E{∥∇L(ŵt)N t+1∥}+ µη2

2
E{∥∇L(ŵt)∥2}

+ µηE{∥∇L(ŵt)∥∥N t+1∥}+ µ

2
E{∥N t+1∥2}

(i)
=(−η +

µη2

2
)E{∥∇L(ŵt)∥2}+ µ

2
E{∥N t+1∥2} (18)

Equality (i) holds because the mean of noise N t is 0. Let
β1 = −η + µη2

2 and β2 = µ
2 , Lemma 1 is proved.

Then, we can use Lemma 1 to prove Theorem 1.

Theorem 1. The convergence upper bound of our proposed
Q-FL Algorithm 1 is given by Eq. (19) when η ∈ (0, 2

µ] and
is given by Eq. (20) when η ∈ (2µ ,∞).

E{L(ŵt)− L(w∗)} ≤ (1 + 2τβ1)
tC0 − β2α

2d[1− (1 + 2τβ1)
t]

24τβ1
,

(19)

E{L(ŵt)− L(w∗)} ≤ (
1

2τ
+ β1)G

2 +
β2α

2d

12
, (20)

where w∗ is the optimal parameter of federated model, C0 =
∥L(ŵ0) − L(w∗)∥ is the initialization quality of federated
model, and η is the learning rate of local models.

It is worth noticing that 2τβ1 is a negative value, so the
right hand side of Eq. (19) is reducing along with iteration t.

Proof. From Lemma 1, we can have

E{L(ŵt+1)− L(w∗)} ≤E{L(ŵt)− L(w∗)} (21)

+β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}.

The property (3) of strong convexity implies Polyak-
Lojasiewicz (PL) inequality:

τ(l(w, (x, y))− l(w∗, (x, y))) ≤ 1

2
∥∇l(w, (x, y))∥2, (22)

which indicates that

2τ(L(w)− L(w∗)) ≤ ∥∇L(w)∥2. (23)

When η ∈ (0, 2
µ], β1 < 0. By multiplying β1 in both sides of

Eq. (23), we have

β1∥∇L(w)∥2 ≤ 2τβ1E{(L(w)− L(w∗))}
⇒ β1E{∥∇L(ŵt)∥2} ≤ 2τβ1E{(L(ŵt)− L(w∗))} (24)

𝑤𝑤1𝑡𝑡
𝑤𝑤2𝑡𝑡 𝑤𝑤𝐾𝐾𝑡𝑡

𝑤𝑤𝑡𝑡 𝑤𝑤𝑡𝑡 𝑤𝑤𝑡𝑡

Dataset D3Dataset D2
Dataset D1 Dataset DK

�

𝑞𝑞𝑞𝑞(𝛼𝛼,𝑤𝑤𝑢𝑢,𝑡𝑡) ← 𝑤𝑤𝑢𝑢,𝑡𝑡

unlearn
Uj

1 update dataset 𝐷𝐷𝑗𝑗 → 𝐷𝐷𝑗𝑗\𝑈𝑈𝑗𝑗
2 update model 𝑤𝑤𝑗𝑗𝑡𝑡 → 𝑤𝑤𝑗𝑗

𝑢𝑢,𝑡𝑡

3 upload 𝑤𝑤𝑗𝑗
𝑢𝑢,𝑡𝑡 to server

Quantization

Fig. 2: The framework of proposed Exact-Fun algorithm

By substituting Eq. (24) into Eq. (21), the following result can
be computed.

E{L(ŵt+1)− L(w∗)}
≤E{L(ŵt)− L(w∗)}+ 2τβ1E{(L(ŵt)− L(w∗))}+ β2E{∥N t+1∥2}
=(1 + 2τβ1)E{L(ŵt)− L(w∗)}+ β2E{∥N t+1∥2}
≤(1 + 2τβ1)

2E{L(ŵt−1)− L(w∗)}
+ (1 + 2τβ1)β2E{∥N t∥2}+ β2E{∥N t+1∥2}
. . .

≤(1 + 2τβ1)
t+1E{L(ŵ0)− L(w∗)}+ β2E{∥N t+1∥2}

t∑
h=0

(1 + 2τβ1)
h

≤(1 + 2τβ1)
t+1E{L(ŵ0)− L(w∗)}+ β2α

2d

12

t∑
h=0

(1 + 2τβ1)
h

=(1 + 2τβ1)
t+1C0 − β2α

2d[1− (1 + 2τβ1)
(t+1)]

24τβ1
.

When η ∈ [2µ ,∞), we have β1 > 0 and the following
inequality.

E{L(ŵt)− L(w∗)} ≤ 1

2τ
E{∥∇L(ŵt)∥2} (25)

By substituting Eq. (25) into Eq. (21), the result is

E{L(ŵt+1)− L(w∗)}
≤ E{L(ŵt)− L(w∗)}+ β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}

≤ 1

2τ
E{∥∇L(ŵt)∥2}+ β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}

≤ (
1

2τ
+ β1)G

2 +
β2α

2d

12
.

Theorem 1 is proved.

Theorem 1 states that even though our proposed Q-FL
algorithm is obfuscated by quantization, the trained federated
model can still converge.

C. Exact and Efficient Federated Unlearning

When our quantized federated learning algorithm terminates
after T iterations, a federated model ŵT is completely trained.
With such a quantized federated model ŵT , exact unlearning
process can be executed to unlearn Uj from the trained model
ŵT once the unlearning is requested by client j, and then the
corresponding unlearned federated model ŵu,T is obtained.

According to Algorithm 1, in each iteration t ∈ [0, T], the
trained local model wt+1

j of any client j is calculated as

wt+1
j = wt

j−η
1

|Dj |
[

∑
(x,y)∈Du

j

∇l(wt
j , (x, y))+

∑
(x,y)∈Uj

∇l(wt
j , (x, y))].

(26)
When Uj is removed from client j’s dataset Dj , the updated
model wu,t+1

j should be calculated via Eq. (27) to unlearn Uj .

wu,t+1
j = wt

j − η
1

|Du
j |
[

∑
(x,y)∈Du

j

∇l(wt
j , (x, y))], (27)

where Du
j = Dj \ Uj is the remaining dataset.

The difference between the trained local model wt+1
j and

the unlearned local model wu,t+1
j is only the gradients of data

in Uj . Thus, to get wu,t+1
j efficiently without computing the

gradients of Du
j , we can directly remove the gradient of Uj

from the previously trained local model wt+1
j . By comparing

Eq. (26) and Eq. (27), the rule of updating wu,t+1
j from wt+1

j
is given as

wu,t+1
j =

|Dj |
|Du

j |
wt+1

j − |Uj ||Du
j |
wt

j +
η

|Du
j |

∑
(x,y)∈Uj

∇l(wt
j , (x, y))].

(28)

Notice that in Eq. (28), we have already got wt+1
j and wt

j

in Q-FL Algorithm 1 as meta-data and only need to compute
gradients for data points in Uj . Due to continuity, the changes
on federated model caused by unlearning request is small
when size of Uj is not too large. Moreover, with the quantized
stability of Q-FL, the federated model can still be stable with
a large probability (see Theorem 2).

The exact federated unlearning process for deleting Uj is
presented in Fig. 2 and Algorithm 2. When client j submits
an unlearning request, Uj is deleted from Dj , and an updated
local model wu,t

j is computed based on client j’s trained
local model at iteration t as shown in Eq. (28). Then, wu,t

j

is uploaded to server to aggregate a new federated model
wu,t that is quantized through quantization function q(α, ·)
to produce ŵu,t. If the newly quantized federated model ŵu,t

is the same as the stored federated model ŵt, deleting Uj has
no impact on the previously trained federated model ŵt, and
retraining from scratch on Du

j would output the same federated
model. This implies that our unlearning method is exact. On
the contrary, if the newly quantized federated model ŵu,t is
different from the stored federated model ŵt, the stability of
quantized federated model is broken, retraining from current
t-th iteration is needed to remove the influence of Uj from
learned models in iteration t until terminated iteration T .

In our unlearning algorithm Exact-Fun, the major computa-
tion time lies in the retraining process (i.e., Line 12 of Algo-
rithm 2), which can be controlled by adjusting the quantization
parameter α based on system requirements. A larger α brings
more stability, smaller retraining probability and less retraining
cost, but also a reduced model utility because of the increase
of noise perturbation. Thus, in Theorem 2, we prove that the
retraining probability in Algorithm 2 is a function of α and a
proper α value can guide efficient unlearning in practice.

Algorithm 2 Exact and Efficient Federated Unlearning
Input: the number of iterations T , the number of clients K, the gran-
ularity of quantization α, the unlearning client j and its unlearning
request Uj
Output: the unlearned federated model ŵu,T

1: identify the unlearning client j and request Uj
2: for iteration t = 0 to T do
3: compute the gradient ∇Lj(w

t
j) of client j on Uj

4: update local model wu,t
j via Eq. (28)

5: upload wu,t
j to server

6: calculate wu,t = wt − |Du
j |

|D| (w
t
j − wu,t

j)

7: quantize wu,t, q(α,wu,t) = ŵu,t

8: if ŵu,t = ŵt // deletion makes no changes then
9: continue;

10: else
11: send ŵu,t to all clients
12: re-run Algorithm 1 on remaining dataset Du with ŵu,t as

initialization for iterations in [t, T]
13: end if
14: end for
15: return ŵu,T

Theorem 2. Assume the distance between the original fed-
erated model wt and its unlearned federated model wu,t has
an upper bound B, i.e., ∥wt − wu,t∥ ≤ B with t ∈ [0, T].
The probability that Algorithm 2 needs retraining is given by
Eq. (29).

Pr(ŵu,t ̸= ŵt) =

{
1− (α

2B
)d, B ∈ [α,∞)

1− (1− B
2α

)d, B ∈ (0, α)
(29)

where d is the dimension of model parameter space W .

Proof. Without loss of generality, we start with the model wt

is quantized to vertex α in 1-dimension space R. Due to the
property of quantization operation, wt that is mapped to α
should originally belong to the range [α2 ,

3α
2] with uniform

distribution U(α2 ,
3α
2). Since ∥wt−wu,t∥ ≤ B, wu,t falls into

the range [wt − B,wt + B] after unlearning process. Thus,
ŵt = ŵu,t only if both wt and wu,t fall into the range [α2 ,

3α
2],

through which we can calculate the probability of ŵt being
equal to ŵu,t, i.e., Pr(ŵu,t = ŵt).

On the other hand, wt, wu,t, ŵt, ŵu,t ∈ W ∈ Rd. The
training process of learning algorithm is random, and the
distribution of each dimension of parameters is independent.
Thus, we can first calculate Pr(ŵu,t = ŵt) and Pr(ŵu,t ̸= ŵt)
in 1-dimension space R and then extend the calculation to d-
dimension space Rd based on binomial distribution.

The range of wt is [α2 ,
3α
2] with the length of α, and the

range of wu,t is [wt − B,wt + B] with the length of 2B.
According to relation between the length 2B and the range
[α2 ,

3α
2], there are three cases for discussing whether ŵu,t is

in [α2 ,
3α
2].

(i) When B ∈ [α,∞), for any wt ∈ [α2 ,
3α
2], the probability

of unlearned model wu,t falls into [α2 ,
3α
2] is α

2B as B is large
enough to cover the range [α2 ,

3α
2]. So, Pr(ŵu,t = ŵt) in 1-

dimension space R can be calculated as follows,

Pr(ŵu,t = ŵt) =

∫ 3α
2

α
2

1

α
· α

2B
dw =

α

2B
. (30)

In d-dimension space Rd, we have Pr(ŵu,t = ŵt) = (α
2B)d,

because every dimension should satisfy the equality require-
ment. Thus, in d-dimension space Rd, Pr(ŵu,t ̸= ŵt) =
1− (α

2B)d.
(ii) When B ∈ [α2 , α), ∀wt ∈ [α2 ,

3α
2 − B], Pr(ŵu,t =

ŵt) =
B+w−α

2

2B ; ∀wt ∈ [3α2 − B, α
2 + B], Pr(ŵu,t = ŵt) =

α
2B ; and ∀wt ∈ [α2 + B, 3α

2], Pr(ŵu,t = ŵt) =
B+ 3α

2 −w

2B .
So, Pr(ŵu,t = ŵt) in 1-dimension space R is calculated as
follows

Pr(ŵu,t = ŵt) =
1

α
[

∫ 3α
2

−B

α
2

B + w − α
2

2B
dw +

∫ α
2
+B

3α
2

−B

α

2B
dw

+

∫ 3α
2

α
2
+B

B + 3α
2
− w

2B
dw] = 1− B

2α
. (31)

Similarly, by extending to d-dimension space Rd, we have
Pr(ŵu,t ̸= ŵt) = 1− (1− B

2α)
d.

(iii) When B ∈ (0, α
2), similar to the case in (ii), Pr(ŵu,t =

ŵt) can be calculated by

Pr(ŵu,t = ŵt) =
1

α
[

∫ α
2
+B

α
2

B + w − α
2

2B
dw +

∫ 3α
2

−B

α
2
+B

2B

2B
dw

+

∫ 3α
2

3α
2

−B

B + 3α
2
− w

2B
dw] = 1− B

2α
. (32)

Thus, in d-dimension space Rd, Pr(ŵu,t ̸= ŵt) = 1 − (1 −
B
2α)

d. Combining the cases (i), (ii), and (iii), Theorem 2 is
proved.

Theorem 2 implies that a larger quantization value α can re-
duce the retraining probability exponentially but may result in
a worse convergence bound. The trade-off between efficiency
and convergence should be designed carefully.

Remark. Our unlearning algorithm Exact-Fun processes one
unlearning request each time. In real FL application, there
may be multiple users submitting multiple unlearning requests,
for which Exact-Fun can run multiple times to accomplish
these unlearning requests one by one. Per the requirements of
applications, the specific one-by-one implementation manner
can be determined in a different ways, such as “first-come-
first-serve” and “priority-based service order”.

V. EXPERIMENTS

In this section, we conduct intensive experiments to validate
the performance of Q-FL algorithm and Exact-Fun algorithm.

A. Experiment Settings

Our experiments are implemented by Pytorch on Google
Colab Tesla T4 GPU. The algorithms are evaluated on neu-
ral networks for both Fashion-MNIST [42] and CIFAR-101

datasets, but they can be applied on any numerical model if
it is compatible with FL. Model structure of Fashion-MNIST
and CIFAR-10 datasets is shown in the following Table I. Due
to page limit, complete experiment settings, code, and results
can be found in this anonymous link.

1https://www.cs.toronto.edu/ kriz/cifar.html

TABLE I: Structure of neural networks

L F-MNIST Model CIFAR-10 Model

1 (5, 5)× 20, Conv, ReLu (5, 5)× 32, Conv, ReLu
2 (2, 2), Maxpooling (2, 2), Maxpooling
3 (5, 5)× 50, Conv, Leaky ReLU (5, 5)× 64, Conv, Leaky ReLU
4 (2, 2), Maxpooling (2, 2), Maxpooling
5 opt× 256, Dense, Leaky ReLU (5, 5)× 128, Conv, Leaky ReLU
6 256× 10, Dense (2, 2), Maxpooling
7 opt× 256, Dense, Leaky ReLU
8 256× 10, Dense

Training and Unlearning Scenarios. In the FL system,
we set the number of clients K to be 10, 20, and 50. The
training dataset is separated to 50 disjoint shards with different
number of data points and different class labels. This is to
simulate the real application scenario of federated learning
in non-i.i.d. settings. For different number of clients K in the
system, we randomly pick K shards of data without repetition
and assign to each client as local dataset. By this setting, we
simulate the realistic application scenario, that is, the more
participant clients, the more training data. Our proposed Exact-
Fun algorithm can support unlearning from multiple clients,
each of which may submit multiple unlearning requests. For
evaluation, 10%×K clients are randomly selected, and each
of them submit 5 unlearning requests, so there are 0.5K
unlearning requests in total. These requests are processed via
Algorithm 2 one-by-one. Notably, in practice, the unlearned
data should be a small portion of a client’s local database,
otherwise, the motivation of performing unlearning may not
be sufficient, and the effectiveness and efficiency of unlearning
may not be good [6], [13]. Thus, for each selected client who
requests unlearning, the total number of unlearned data in the
5 requests is at most 20% of his/her local dataset, i.e., the
portion of unlearned data is p ≤ 20%.

Baseline Models. For Q-FL algorithm, we choose the
original federated learning (OFL) algorithm as a baseline,
to compare model convergence, model accuracy, and training
speed in Section V-B.

Since we are the first to explore the exact federated un-
learning problem and there is no publicly available exact
approach, retraining with OFL algorithm from scratch on the
remaining dataset Du is adopted as a baseline to evaluate our
proposed Exact-Fun algorithm. Besides, one state-of-the-art
approximate federated unlearning method [26] on INFOCOM
2022, is selected as baseline for unlearning performance com-
parison. The evaluation of unlearning performance is presented
in Section V-C.

B. Q-FL Performance

Our Q-FL algorithm uses quantization to stabilize the train-
ing process so as to facilitate exact federated unlearning. The
impact of quantization on the federated learning is deeply
investigated by changing the value of quantization parameter α
to measure model convergence, accuracy, and training speed.

The value of α are set differently for Fashion-MNIST
and CIFAR-10 dataset. For Fashion-MNIST dataset, the

https://www.dropbox.com/sh/pdgl4vfbbhdxxml/AADBJeS6JKCAfw5TCD4Oe1Oya?dl=0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Lo
ss

val
ue

 on
 te

st d
ata

T h e n u m b e r o f t r a i n i n g I t e r a t i o n T

 O F L
 Q - F L (α = 0 . 0 2)
 Q - F L (α = 0 . 0 1)
 Q - F L (α = 0 . 0 0 5)
 Q - F L (α = 0 . 0 0 2 5)

(a) loss on F-MNIST dataset

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
1 . 0

1 . 5

2 . 0

2 . 5

Lo
ss

val
ue

 on
 te

st d
ata

T h e n u m b e r o f t r a i n i n g I t e r a t i o n T

 O F L
 Q - F L (α = 0 . 0 0 4)
 Q - F L (α = 0 . 0 0 2)
 Q - F L (α = 0 . 0 0 1)
 Q - F L (α = 0 . 0 0 0 5)

(b) loss on CIFAR-10 dataset
Fig. 3: The loss value of FL models with different α (K=50).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

Ac
cur

acy
 on

 te
st d

ata

T h e n u m b e r o f t r a i n i n g I t e r a t i o n T

 O F L
 Q - F L (α = 0 . 0 2)
 Q - F L (α = 0 . 0 1)
 Q - F L (α = 0 . 0 0 5)
 Q - F L (α = 0 . 0 0 2 5)

(a) accu. on F-MNIST dataset

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

Ac
cur

acy
 on

 te
st d

ata

T h e n u m b e r o f t r a i n i n g I t e r a t i o n T

 O F L
 Q - F L (α = 0 . 0 0 4)
 Q - F L (α = 0 . 0 0 2)
 Q - F L (α = 0 . 0 0 1)
 Q - F L (α = 0 . 0 0 0 5)

(b) accu. on CIFAR-10 dataset
Fig. 4: The accuracy value of FL models with different α (K=50).

average norm of each element in the trained feder-
ated model parameters is 1

d

∑d
i=1 ∥wi∥=0.2. So, we set

α={0.02,0.01,0.005,0.0025}, which are 10%, 5%, 2.5% and
1.25% of the average parameter norm, respectively. Similarly,
for CIFAR-10 dataset, the average norm of each element in the
trained federated model parameters is 0.04, and then α is set
to {0.004, 0.002, 0.001, 0.0005} accordingly. We choose α up
to 10% of average parameter norm for the purpose of maintain
a reasonable model utility.

To evaluate the influence of α on our Q-FL algorithm
empirically, we set α as the above values for Fashion-MNIST
dataset and CIFAR-10 dataset. The loss values of federated
models on corresponding test datasets during each iteration
are shown in Fig. 3. First of all, we can see that the loss
values of all compared federated models decrease with the
increase of T and reach to a stable level after a certain
number iterations (e.g., T = 35 in Fig. 3(a)). This observation
confirms that our quantized federated learning (Q-FL) can
converge as analyzed in Theorem 1. For our Q-FL, a greater
α value means more noise is added in model parameter,
leading to a bigger loss value and a slower convergence
speed. Especially, as shown in Fig. 3, the loss value of Q-
FL with α = 0.0025 converges nearly as fast as the baseline
OFL. Therefore, though the quantization parameter α has an
impact on model convergence, an appropriate α value can
help our Q-FL achieve the comparable learning performance
as the original federated learning. Similar conclusions can be
found for CIFAR-10 dataset, which show our Q-FL model can
converge and achieve small loss value as OFL.

Then, we present the influence of α on the testing accuracy
of federated models in Fig. 4. As we can see from Fig. 4(a),
the accuracy of the compared federated models on Fashion-
MNIST is increased when T grows up and can reach a stable
value after the training process is done. Besides, for our Q-
FL model, the quantized federated model with a smaller α

Q-FL w/ Q-FL w/ Q-FL w/ Q-FL w/
K OFL α = 0.02 α = 0.01 α = 0.005 α = 0.0025

K=10 6.66±0.002 6.71±0.002 6.74±0.002 6.75±0.002 6.79±0.002
K=20 11.56±0.003 11.58±0.003 11.59±0.003 11.61±0.003 11.64±0.003
K=50 26.87±0.003 26.94±0.003 27.09±0.003 27.19±0.003 27.35±0.003

TABLE II: Training time comparison between OFL and Q-FL

value can achieve higher accuracy, and the training accuracy
is more stable, because a smaller α means less noise is injected
to model parameters. This stable accuracy also implies the Q-
FL algorithm is converged. Specifically, when α = 0.0025,
the accuracy of Q-FL on Fashion-MNIST dataset is extremely
close to OFL, which means our proposed Q-FL has compa-
rable accuracy as the original federated learning if α is small
enough. Similarly, the accuracy of Q-FL models on CIFAR-
10 dataset is always increasing and reaches a stable value in
Fig. 4(b). When α is small, the accuracies of Q-FL models
have little difference from that of OFL.

In addition, we also compare the training time of our Q-
FL and the baseline OFL. Table II shows the average training
time of one iteration (in second) of our Q-FL and the baseline
OFL, where we can see that the Q-FL only increases the
average training time of one iteration 2% compared with the
baseline. This minor extra time cost is acceptable considering
the significant unlearning efficiency improved by our Exact-
Fun unlearning algorithm in next section. In a nutshell, the
quantization function q(α, ·) of our Q-FL algorithm is not
a time consuming process and can achieve desired model
accuracy. More experiment results about Q-FL algorithm can
be found in the anonymously linked pdf file.

C. Unlearning Effectiveness and Efficiency

In this part, we evaluate the effectiveness and efficiency
of our Exact-Fun algorithm. Due to the page limit, we only
present the results with K=20. Complete results can be found
in the anonymously linked pdf file.

Unlearning Effectiveness (Accuracy). The unlearning ef-
fectiveness can be evaluated in terms of the accuracy differ-
ence between the retrained federated model and the unlearned
federated model output by different unlearning algorithms (i.e.,
Exact-Fun and INFOCOM22 algorithm). Here we adopt Sym-
metric Absolute Percentage Error (SAPE), which is used in
many unlearning literature [26], [40], [41], to measure the dif-
ference between two accuracies, Acc1 and Acc2, as unlearning
effectiveness: SAPE(Acc1, Acc2) = |Acc1−Acc2|

|Acc1|+|Acc2| × 100%.
SAPE computed on different datasets can address unlearning
effectiveness from two aspects: (i) for the test data, a smaller
value of SAPE means the accuracy of unlearned model is
closer to the accuracy of the retrained model, indicating a bet-
ter prediction performance of unlearning algorithm; while (ii)
for the unlearned data, a smaller SAPE means the unlearned
model contains less information about the removed data.

Fig. 5(a) shows the impact of the quantization parameter
α on the effectiveness of Exact-Fun with setting p = 0.1.
The baseline (INFOCOM22) is not impact by α, and has
constant SAPE when α varies. Clearly, we find that the SAPE
value on the test data increases as α is getting greater. The
reason is that a greater α introduces more noise perturbation on

https://www.dropbox.com/s/jz445y59r5kl63b/ICDM_2023_Exact_Unlearning_Appendix.pdf?dl=0
https://www.dropbox.com/s/jz445y59r5kl63b/ICDM_2023_Exact_Unlearning_Appendix.pdf?dl=0

Baseline Baseline Baseline Exact-Fun Exact-Fun Exact-Fun Exact-Fun
Dataset Original Model Retrained Model INFOCOM22 α=0.0025 α=0.005 α=0.01 α=0.02

Fashion-MNIST 82.86±1.35 51.54±2.27 62.29±1.49 52.75±1.60 52.15±2.02 52.34±1.62 56.17±1.63
CIFAR-10 87.11±1.13 53.03±1.83 69.21±1.22 54.60±1.64 54.74±1.90 52.59±1.67 59.79±2.78

TABLE III: MIA accuracy (%) for deleted data on original model, retrained model, and different unlearning algorithms

0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

SA
PE

 va
lue

Q u a n t i z a t i o n p a r a m e t e r α

 O u r S A P E
 B a s e l i n e S A P E

(a) SAPE on test data
when p=0.1

0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

SA
PE

 va
lue

Q u a n t i z a t i o n p a r a m e t e r α

 O u r S A P E
 B a s e l i n e S A P E

(b) SAPE on unlearned
data when p=0.1

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

SA
PE

 va
lue

U n l e a r n i n g p o r t i o n p

 O u r S A P E
 B a s e l i n e S A P E

(c) SAPE on test data
when α=0.01

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

SA
PE

 va
lue

U n l e a r n i n g p o r t i o n p

 O u r S A P E
 B a s e l i n e S A P E

(d) SAPE on unlearned
data when α=0.01

1 . 9 9 6 . 4 5 1 3 . 4 1 1 8
6 3

1 . 5 3 1 . 5 3 1 . 5 3 1 . 5 3
0 . 0 0 2 5 0 . 0 0 5 0 . 0 1 0 . 0 2

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

Sp
ee

d-u
p r

ati
o

Q u a n t i z a t i o n p a r a m e t e r α

 O u r s p e e d - u p
 B a s e l i n e s p e e d - u p

(e) speed-up ratio vary
with α

1 0 6
2 0

1 3 . 4 7 . 6 7 2 . 0 91 . 5 1 . 5 3 1 . 7 1 1 . 8 2
0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0

0

5 0 0 0

1 0 0 0 0

Sp
ee

d-u
p r

ati
o

U n l e a r n i n g p o r t i o n p

 O u r s p e e d - u p
 B a s e l i n e s p e e d - u p

(f) speed-up ratio vary
with p

Fig. 5: SAPE on Fashion-MNIST test data and unlearned data with different α and p in Fig. 5(a), 5(b), 5(c), 5(d); speed-up in 5(e), 5(f).

the quantized federated learning process, which leads a lower
accuracy in our unlearned federated model. Compared with the
baseline INFOCOM22, our Exact-Fun algorithm beats it when
α is small (e.g., α is 0.0025, 0.005 and 0.01). On the other
hand, the SAPE on the unlearned data increases slowly for
small α values and increases sharply when α becomes 0.02.
When α is smaller, our Exact-Fun algorithm is more likely to
retrain the quantized federated model on remaining dataset as
the retraining method does, so the accuracy difference between
our unlearned model and the retrained model becomes smaller.
When α is larger, our Exact-Fun has less probability to retrain
for unlearning, resulting in larger accuracy difference between
our unlearned model and the retrained model on the unlearned
data. Then, the SAPE of our unlearned model is better than the
baseline except α=0.02. The attractive merit of our Exact-Fun
is the exact unlearning guarantee for user, while the baseline is
just an approximate solution. So, we can conclude that a proper
α can help Exact-Fun algorithm achieve better effectiveness
than the baseline.

Hereafter, we explore the impact of unlearning portion p
on unlearning effectiveness with p = {0.05, 0.1, 0.15, 0.2}.
In Fig. 5(c) and Fig. 5(d), the SAPE values on the test data
and unlearned data are presented. We can observe when the
unlearning portion p increases, the SAPE value of our Exact-
Fun decreases, which can be explained through the viewpoint
of model retraining. When p is smaller, the probability of
retraining the quantized federated model in Exact-Fun is lower,
causing a larger difference between our quantized model and
the retrained model. In contrast, when p becomes larger, our
Exact-Fun algorithm needs to be retrained on the remaining
dataset, so the accuracy difference is reduced. Especially,
the SAPE value on the unlearned data decreases drastically
from p=0.05 to p=0.1. Because Exact-Fun does not retrain
the quantized model when p=0.05, the accuracy difference
between our unlearned model and the retrained model is large.
While, SAPE of the baseline INFOCOM22 keeps increasing
when p gets larger, because the baseline adopts a hessian
matrix based approximate unlearning, which has more error
when more data is removed. As a summary, our Exact-Fun
outperforms the baseline approximate unlearning algorithm in
effectiveness, especially when unlearning more data.

Unlearning Effectiveness (Privacy). Since the purpose of
unlearning is to remove the private information of deleted data,
membership inference attack (MIA) is a metric to evaluate the
unlearning effectiveness in many related works [7], [11], [25],
which infers whether a data sample is in the training dataset
of a model or not. So, for the deleted data, a lower MIA
accuracy means that the unlearning algorithm has stronger
privacy protection. In Table III, original model means we only
delete data but do not change the trained model, so high MIA
accuracy remains on both datasets. Retrained model has the
lowest MIA accuracy (near 50%) due to the complete re-
training on remaining dataset, so a good unlearning algorithm
should have similar MIA accuracy to the retrained model.
From Table III, we can see that for all α, our Exact-Fun
achieves similar accuracy as the retrained model and is much
lower that that of INFOCOM22, which means our Exact-Fun is
stronger in private information removal. The reason of Exact-
Fun’s success is that quantization perturbs model parameters,
and some retraining process further removes the information
of deleted data.

Unlearning Efficiency. The unlearning efficiency can be
measured by the unlearning speed-up ratio. Specifically, we
unlearn the same unlearning requests (i.e., deleting the same
data) via retraining method and different unlearning algorithms
separately, and we can obtain the average time to process one
unlearning request for each method. The unlearning speed-up
ratio is the ratio of the average time of retraining method to
the average time of different unlearning algorithms. The higher
speed-up ratio, the better efficiency.

The influence of α on the efficiency of Exact-Fun is shown
in Fig. 5(e). It is obvious that the speed-up ratio increases with
the increase of α, because a greater α value indicates a stronger
stability of our quantized federated model and less retraining
probability, leading to higher speed-up ratio. Compared with
the baseline (with fixed speed-up ratio 1.53), our Exact-Fun
is more efficient for every α. Then, the influence of p on
the unlearning efficiency is reported in Fig. 5(f). With the
increase of p, the speed-up ratio of Exact-Fun is reduced
because unlearning a larger portion part of data may break the
stability of quantized federated model, which results in more
retraining time. For the baseline, even though its speed-up ratio

increases as p gets larger, our Exact-Fun still outperforms and
can achieve over 10,000× speed-up ratio when p=0.05.

VI. CONCLUSION & FUTURE WORK

In this paper, we study the novel federated unlearning
problem. As a fresh solution of exact federated unlearning, we
design a Q-FL algorithm that supports exact unlearning, and
then propose the Exact-Fun algorithm to achieve unlearning.
In addition, we analyze the convergence upper bound of
proposed Q-FL algorithm, and give the analytical retraining
probability of the Exact-Fun algorithm. Extensive experiments
are conducted on real datasets with various parameter settings,
showing that our Exact-Fun outperforms the baseline signifi-
cantly in both effectiveness and efficiency.

As the attempt work on exact federated unlearning, to
facilitate data deletion at the federated server without request
conflict (i.e., one client wants to remove a data instance while
another does not want), we assume that all clients’ local
datasets are disjoint. Considering local clients’ data character-
istics (such as overlapping, correlated, and common datasets)
in reality, more complicated scenarios will be investigated with
further endeavors in our future work.

REFERENCES

[1] N. Aldaghri, H. Mahdavifar, and A. Beirami, “Coded machine unlearn-
ing,” IEEE Access, vol. 9, pp. 88 137–88 150, 2021.

[2] A. Beck, First-order methods in optimization. SIAM, 2017.
[3] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-

scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.
[4] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,

A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159.

[5] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1092–1104.

[6] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 463–480.

[7] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When machine unlearning jeopardizes privacy,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 896–911.

[8] Y. Chen, S. Zhang, and B. K. H. Low, “Near-optimal task selection for
meta-learning with mutual information and online variational bayesian
unlearning,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2022, pp. 9091–9113.

[9] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” arXiv
preprint arXiv:2101.03961, 2021.

[10] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[11] S. Fu, F. He, and D. Tao, “Knowledge removal in sampling-
based bayesian inference,” in The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. [Online]. Available: https:
//openreview.net/forum?id=dTqOcTUOQO

[12] S. Garfinkel, J. M. Abowd, and C. Martindale, “Understanding database
reconstruction attacks on public data,” Communications of the ACM,
vol. 62, no. 3, pp. 46–53, 2019.

[13] A. Ginart, M. Guan, G. Valiant, and J. Y. Zou, “Making ai forget you:
Data deletion in machine learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[14] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[15] J. Gong, J. Kang, O. Simeone, and R. Kassab, “Forget-svgd: Particle-
based bayesian federated unlearning,” in 2022 IEEE Data Science and
Learning Workshop (DSLW). IEEE, 2022, pp. 1–6.

[16] L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, 2021, pp. 11 516–11 524.

[17] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on
information theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[18] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified data
removal from machine learning models,” in International Conference on
Machine Learning. PMLR, 2020, pp. 3832–3842.

[19] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites,
“Adaptive machine unlearning,” Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021.

[20] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 603–618.

[21] R. Hu, Y. Guo, E. P. Ratazzi, and Y. Gong, “Differentially private
federated learning for resource-constrained internet of things,” arXiv
preprint arXiv:2003.12705, 2020.

[22] Z. Izzo, M. Anne Smart, K. Chaudhuri, and J. Zou, “Approximate data
deletion from machine learning models,” in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, A. Banerjee and K. Fuku-
mizu, Eds., vol. 130. PMLR, 13–15 Apr 2021, pp. 2008–2016.

[23] Q.-Y. Jiang, Y. He, G. Li, J. Lin, L. Li, and W.-J. Li, “Svd: A large-scale
short video dataset for near-duplicate video retrieval,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
5281–5289.

[24] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[25] G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “Federaser: Enabling
efficient client-level data removal from federated learning models,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), 2021, pp. 1–10.

[26] Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be forgotten
in federated learning: An efficient realization with rapid retraining,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions, 2022, pp. 1749–1758.

[27] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
understanding rating dimensions with review text,” in Proceedings of
the 7th ACM conference on Recommender systems, 2013, pp. 165–172.

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[29] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic Learn-
ing Theory. PMLR, 2021, pp. 931–962.

[30] Q. P. Nguyen, R. Oikawa, D. M. Divakaran, M. C. Chan, and B. K. H.
Low, “Markov chain monte carlo-based machine unlearning: Unlearning
what needs to be forgotten,” arXiv preprint arXiv:2202.13585, 2022.

[31] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut,
and D. Novotny, “Common objects in 3d: Large-scale learning and
evaluation of real-life 3d category reconstruction,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
10 901–10 911.

[32] S. Schelter, S. Grafberger, and T. Dunning, “Hedgecut: Maintaining
randomised trees for low-latency machine unlearning,” in Proceedings
of the 2021 International Conference on Management of Data, 2021,
pp. 1545–1557.

[33] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember what
you want to forget: Algorithms for machine unlearning,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[34] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on computer and communications security, 2017, pp. 587–
601.

https://openreview.net/forum?id=dTqOcTUOQO
https://openreview.net/forum?id=dTqOcTUOQO

[35] D. o. J. State of California, “the california consumer privacy act
(ccpa),” 2000. [Online]. Available: https://oag.ca.gov/privacy/ccpa

[36] E. Ullah, T. Mai, A. Rao, R. A. Rossi, and R. Arora, “Machine
unlearning via algorithmic stability,” in Conference on Learning Theory.
PMLR, 2021, pp. 4126–4142.

[37] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

[38] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated unlearning via class-
discriminative pruning,” in Proceedings of the ACM Web Conference
2022, 2022, pp. 622–632.

[39] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454–3469, 2020.

[40] C. Wu, S. Zhu, and P. Mitra, “Federated unlearning with knowledge
distillation,” arXiv preprint arXiv:2201.09441, 2022.

[41] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10 355–10 366.

[42] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[43] X. Zhou, “On the fenchel duality between strong convexity and lipschitz
continuous gradient,” arXiv preprint arXiv:1803.06573, 2018.

https://oag.ca.gov/privacy/ccpa

	Introduction
	Related Works
	Preliminary
	Exact Federated Unlearning
	Problem Formulation
	Quantization of Federated Learning
	Exact and Efficient Federated Unlearning

	Experiments
	Experiment Settings
	Q-FL Performance
	Unlearning Effectiveness and Efficiency

	Conclusion & Future Work
	References

