
Appro-Fun: Approximate Machine Unlearning in
Federated Setting

Zuobin Xiong∗, Wei Li†, and Zhipeng Cai†
∗Department of Computer Science, University of Nevada, Las Vegas, NV, USA
†Department of Computer Science, Georgia State University, Atlanta, GA, USA

∗ zuobin.xiong@unlv.edu; † {wli28, zcai}@gsu.edu

Abstract—Machine learning models contain a lot of informa-
tion about the training dataset, so even if some data points
are deleted, the private information can still be inferred. To
counteract this problem, “machine unlearning”, as an emerging
data management approach, is proposed to remove data from the
databases and the influence of data from the trained models. Yet,
machine unlearning is still in its early stage, and there are rare
existing methods towards machine unlearning in the federated
setting that is a more practical and crucial scenario. Therefore,
this paper investigates the federated machine unlearning problem
where the local clients of a federated system intend to delete
their local private data appropriately. The proposed method
is termed as Approximate Federated unlearning (Appro-Fun),
which adopts differential privacy and second-order optimization
to achieve (ϵ, δ)-approximate unlearning on trained models.
Rigorous theoretic analysis presents the performance guarantee
of Appro-Fun, and real-data experiments validate the advantages
of Appro-Fun compared with the state-of-the-art.

Index Terms—federated learning, machine unlearning, privacy
and security, data management

I. INTRODUCTION

For the performance improvement of machine learning
models, it is indispensable to collect an adequate amount of
training data from data owner and/or other third parties. To
name some, Google collects users’ search history and interests
to train the commercial applications for recommendation and
advertisements, images and videos posted by Facebook and
Instagram users [1] are used to learn image classifier or object
detection models, and several language processing models are
trained on user reviews from different websites [2]. Generally,
users give their data out to the service providers/applications
for model development in exchange of desired service quality,
entertainment, experience, etc. When more and more data
is being collected and analyzed, data privacy becomes an
inescapable concern for everyone. To deal with data privacy,
the concept of “Right To Be Forgotten” has been proposed
and enforced by some laws and regulations, including the
General Data Protection Regulation (GDPR) of EU [3], the
California Consumer Privacy Act (CCPA) [4], and Federal
Trade Commission (FTC) [5]. Following these regulations, a
user has the rights to delete his/her private data from service
providers at anytime they want, such as medical data and
search history. Thus, a practical and crucial question for the
service providers is how to manage the users’ data removal
requests in an efficient and effective manner?

As well known, simply deleting users’ data from storage
databases is not a successful way because the machine learn-
ing models are able to memorize quite information of the
training data [6], regardless of private or non-private. This
memorized information is not forgotten until the model is
changed accordingly. In addition, many kinds of attacks, such
as model inversion attack [7], membership inference attack [8],
and reconstruction attack [9], can be harnessed to dig out
privacy of the deleted data from learned models. Therefore,
correct and guaranteed data removal from both database-
level and the trained model-level for users has become a
challenging problem faced by researchers. Intuitively, deleting
the data from training dataset and then retraining the machine
learning models from scratch is a straightforward method to
achieve the unlearning objective, but the retraining time cost is
prohibitively high, especially on the complex tasks and models
with billions of parameters [10]. Thus, designing an effective
and computationally efficient data deletion method is the main
focus of current machine unlearning research.

The terminology “machine unlearning” was first proposed
in [11], where the private data from training datasets and
the impact of data in the learned models are eliminated for
statistical query tasks with less cost. Since then, there have
been only limited works on unlearning mechanisms but with
different weaknesses: (i) Model dependency. Some unlearning
methods are specified for certain learning models, such as
statistical query [11], k-means cluster [12], decision tree [13],
and linear regression [14], [15]. (ii) Lack of theoretical guar-
antee. Most existing works focus on data deletion experiments
while omitting the theoretical unlearning guarantee, which is
important for users to know how private their data is after
unlearning. Besides, when it comes to federated settings, more
challenges in unlearning are brought by the distributed users
and model exchanges between server and users.

Motivated by the aforementioned observations, in this pa-
per, we aim to design an approximate federated unlearning
algorithm that is model agnostic and with theoretical guar-
antee. Specifically, in our proposed Appro-Fun algorithm,
local clients can remove their data through a quasi Newton’s
method and get an unlearned local model. Then, the unlearned
local model is uploaded to server for aggregation and privacy
protection, which outputs a federated unlearned model that
is distinguishable from the completely retrained model. We
highlight the contributions of this paper as follows:

• We propose a novel approximate federated unlearning
algorithm, Appro-Fun, that is model agnostic and can be
applied on the learned model in federated setting.

• A Newton’s method-based local model unlearning mech-
anism is developed in our Appro-Fun algorithm, which
is used for efficient and approximate data deletion.

• For the proposed Appro-Fun algorithm, we prove the
indistinguishability between the unlearned model and the
retrained model as well as the performance guarantee of
the unlearned model.

• The proposed Appro-Fun algorithm is evaluated on real
datasets via experiments, which validate its superiority
over the state-of-the-art.

This paper is organized as follows. The related works and
the preliminaries are introduced in Section II and Section III,
respectively. We detail our methodology in Section IV. Our
proposed algorithm is implemented and evaluated in Sec-
tion V. Finally, we conclude this paper and discuss future
work in Section VI.

II. RELATED WORKS

Machine unlearning is formally defined by [12] and is
classified into exact unlearning and approximate unlearning,
according to their effectiveness.

Exact unlearning requires the distribution of an unlearned
model should be exactly same as that of a model that is
retrained on the dataset without the deleted data. This re-
quirement is hard to be met in complicated models, so exact
unlearning is mainly designed on simple machine learning
models. In [11], authors designed unlearning algorithms for
statistical query based models, such as Naive Bayesian clas-
sifier and SVM. Then, Ginart et al. [12] proposed the first
unlearning method for unsupervised learning k-means cluster
algorithm, which adopts stability and divide-and-conquer to
improve unlearning efficiency. Two similar ideas [16], [17] are
proposed to split training dataset into disjoint shards for reduc-
ing the retraining time. Following this, [13], [18] conducted
unlearning algorithms on random forests algorithm, where the
structure of decision tree is adjusted such that the retrained
subtree can be minimized. The exact unlearning methods
realize the unlearning requirement by retraining partial model,
which can guarantee unlearning effectiveness but sacrifice
unlearning efficiency.

On the contrary, approximate unlearning methods can
achieve unlearning efficiency better than exact unlearning
methods with slight cost in unlearning effectiveness. In ap-
proximate unlearning, the distribution of an unlearned model
parameters is indistinguishable from that of a retrained model
parameters. Instead of retraining partial of a learned model,
approximate unlearning methods perform a post-processing
on the learned model to obtain an approximation of the
fully retrained model. In [19]–[21], authors used similar idea
to achieve approximate unlearning by updating the trained
models with stored gradients when some data points are
removed. While, [22] and [23] imported statistical indistin-
guishability and algorithm stability respectively to unlearn data

via gradient descent with provable approximation. To cover
the adversarial scenario where a user deliberately deletes data
under specific distribution, Gupta et al. [24] proposed adaptive
machine unlearning that can handle arbitrary model classes
and training methodologies. On the other hand, the authors
of [14], [25] proposed differentially private data removal
mechanisms, which can unlearn data from the learned models
through hessian matrix. Golatkar and Wang [26], [27] focused
on unlearning a specific class label from deep networks.
Considering the computational cost of hessian matrix, Izzo
et al. [15] found a sublinear algorithm to speed up unlearning
from linear models efficiently. In federated learning, a few
probability-based unlearning methods were utilized to solve
the approximate unlearning with Bayesian [28], [29] and
Monte Carlo [30]. While these methods fail to provide a
theoretical guarantee on the performance of unlearned models.
Therefore, it is still an open problem for us to explore the
approximate unlearning solutions under federated settings.

III. PRELIMINARY

In this section, we introduce the basic knowledge of fed-
erated learning (FL), serving as the foundation of unlearn-
ing hereafter. As an advanced distributed learning paradigm,
FL allows a set of geographically distributed clients K =
{1, 2, . . . ,K} to learn a global model stored on the FL server
using their own local datasets Dk (k ∈ K). In Dk, each data
instance is represented by (x, y), where x ∈ X , X is the
feature space of training data, y ∈ Y , and Y is the set of
ground truth labels. In an FL system, all the clients’ local
datasets together compose a global dataset D =

⋃
k∈KDk.

During each training iteration t, the goal of each local client
k in the system is to minimize a loss function as shown in
Eq. (1).

Lk(ξ
t
k) =

1

|Dk|
∑

(x,y)∈Dk

l(ξtk, (x, y)), (1)

where Lk(·) is the loss function of client k, ξtk is the model
parameter of client k at iteration t, |Dk| is the size of Dk, and
l(ξtk, (x, y)) is the loss value of model ξtk on a data instance
(x, y). Then, the clients’ local models are uploaded to the
server for model aggregation, and the federated model param-
eter ξt at iteration t is calculated via FedAvg algorithm [31]
as follows.

ξt =
∑
k∈K

|Dk|
|D| ξ

t
k. (2)

According to the loss function of local clients and the aggrega-
tion algorithm, the optimization objective of federated learning
system can be formulated as Eq. (3).

min
ξt∈W

L(ξt) =
∑
k∈K

|Dk|
|D| Lk(ξ

t), (3)

where W ∈ Rd is the d-dimension hypothesis space of model
parameters. To sum up, the computation flow of FL can be
illustrated in Algorithm 1. Formally, an FL algorithm can be
defined as A : D →W , which takes D as the input and outputs
the trained federated model parameter w belonging to W .

In this paper, we make assumptions on the considered
federated learning as existing works, which can facilitate our
analysis.

2

Algorithm 1 Federated Learning Algorithm
Input: the number of iteration T , the number of clients K,
and the learning rate η
Output: federated model w = ξT

1: Server executes:
2: initialize ξ0

3: for iteration t = 0 to T do
4: for client k ∈ K in parallel do
5: ξt+1

k ← ClientUpdate(k, ξt)
6: end for
7: ξt+1 ←

∑
k∈K

|Dk|
|D| ξ

t+1
k

8: end for
9: return w = ξT

10: Clients execute:
11: ClientUpdate(k, ξt): // run on each client
12: compute gradient ∇Lk(ξ

t) on Dk

13: update local model ξt+1
k ← ξt − η∇Lk(ξ

t)
14: upload model ξt+1

k to server

1) (Lipschitz Continuous Gradient) ∀w,w′ ∈ W , the gra-
dient of the loss function Lk(·) is Lipschitz continuous
with µ > 0 [32], [33]:

∥∇Lk(w)−∇Lk(w
′)∥ ≤ µ∥w − w′∥. (4)

2) (Lipschitz Continuity) ∀w,w′ ∈ W , the loss function
l(·, (x, y)) is Lipschitz continuous with ι > 0 [32], [34]:

∥l(w, (x, y))− l(w′, (x, y))∥ ≤ ι∥w − w′∥. (5)

3) (Strong Convexity) ∀w,w′ ∈ W , the loss function
l(·, (x, y)) is strongly convex with τ > 0 [32], [33]:

l(w, (x, y)) ≥ l(w′, (x, y))+∇l(w′, (x, y))⊤(w − w′)

+
τ

2
∥w − w′∥2, (6)

where ⊤ is the transpose operation.
4) (Hessian-Lipschitz) The loss function l(w, (x, y)) is

Hessian Lipschitz with constant M [25]:

∥∇2l(w, (x, y))−∇2l(w′, (x, y)))∥ ≤M∥w − w′∥
(7)

or ∥∇3l(w)∥ ≤M,∀w. (8)

These assumptions are practical for common loss functions
such as mean square error and cross-entropy loss in linear
models.

IV. APPROXIMATE FEDERATED UNLEARNING

Suppose there is a set of clients K in the FL system. When
client j ∈ K would like to erase his/her data Uj ⊂ Dj

(|Uj | = m < |Dj |) from the trained federated model w, he/she
could submit an unlearning request to the server. Particularly,
the clients hold disjoint private datasets locally, so the un-
learned data submitted by each user is different. In addition to
the federated model w, the FL algorithm A also produces a

𝑤𝑤1𝑡𝑡
𝑤𝑤2𝑡𝑡 𝑤𝑤𝐾𝐾𝑡𝑡

𝑤𝑤𝑡𝑡 𝑤𝑤𝑡𝑡 𝑤𝑤𝑡𝑡

Dataset D3Dataset D2
Dataset D1 Dataset DK

�

�𝑤𝑤𝑢𝑢 ← �𝑤𝑤𝑢𝑢

unlearn
Uj

1 update dataset 𝐷𝐷𝑗𝑗 → 𝐷𝐷𝑗𝑗\𝑈𝑈𝑗𝑗
2 compute 𝑔𝑔 and hessian
3 update local �𝑤𝑤𝑗𝑗𝑢𝑢

noise

Fig. 1: The framework of proposed Appro-Fun algorithm.

set of meta-data M (e.g., gradients and intermediate models),
which can be used in the unlearning procedure later and for
other purposes. Accordingly, an unlearning algorithm can be
defined as A u : (A (D),Uj ,M) → W , which takes the
previously trained model A (D), the unlearning dataset Uj , and
the meta-dataM as the inputs and outputs an unlearned model.
Moreover, the definition of approximate federated unlearning
is addressed as follows.

Definition 1. (ϵ, δ)-Approximate Federated Unlearning.
Given an FL algorithm A : D → W and an unlearning
request Uj from client j, the unlearning algorithm A u :
(A (D),Uj ,M) → W is an (ϵ, δ)-approximate federated
unlearning that unlearns Uj from A (D) if

Pr[A u(A (D),Uj ,M)] ≤ eϵ · Pr[A (Du)] + δ, and

Pr[A (Du)] ≤ eϵ · Pr[A u(A (D),Uj ,M)] + δ.

In Definition 1, the distribution of the unlearned model
parameters is indistinguishable from that of model parameters
trained from scratch on the remaining dataset Du = D \ Uj .

When processing an unlearning request Uj , Uj should be
deleted from Dj and D, and the influence of Uj should be
removed from the trained federated model. Moreover, a suc-
cessful unlearning algorithm should have unlearning cost (e.g.,
computation time) less than retraining cost from scratch on
the remaining dataset Du. In order to achieve the approximate
unlearning in the existing FL model, we propose the Appro-
Fun algorithm and present its framework in Fig. 1. Appro-Fun
consists of two major steps: (i) at the first step, the local clients,
who request unlearning, remove their private data, compute
gradient and hessian, and upload new unlearned local models
to the server, which is described in Section IV-A; and (ii) at the
second step, the server aggregates an intermediate unlearned
model and protects it with carefully designed private noise,
which is presented in Section IV-B.

A. Local Model Unlearning

To process an unlearning request, the data points should
be deleted from local dataset, and the influence of should be
removed from the trained local and federated models. Without
loss of generality, we illustrate Appro-Fun algorithm using a
simple case where one local client submits one unlearning

3

request at a time. For the case when each of multiple clients
submits multiple unlearning requests, we can repeat Appro-
Fun algorithm iteratively to implement data deletion requests
one by one. Firstly, per client j’s unlearning request, Uj is
removed from client j’s local dataset Dj . Next, the trained
local model wj is used to unlearn the influence of Uj from
it through Newton’s method [35] to approximate the model
retrained from scratch on dataset Du

j = Dj \ Uj .
Originally, the computation of Newton’s method is a time-

consuming process because of the calculation of second-order
derivation for hessian matrix. To reduce time cost, we compute
the Newton’s method in the following. Noticing that the loss
function for client j on dataset Dj is formulated below,

Lj(wj ,Dj) =
1

|Dj |
∑

(x,y)∈Dj

l(wj , (x, y)). (9)

Rearranging Eq. (9) will give us Eq. (10) as follows

|Dj | · Lj(wj ,Dj) =
∑

(x,y)∈Du
j

l(wj , (x, y)) +
∑

(x,y)∈Uj

l(wj , (x, y))

=|Du
j | · Lu

j (wj ,Du
j) + |Uj | · Lj(wj ,Uj), (10)

where Lu
j (wj ,Du

j) is the loss value on dataset Du
j and

Lj(wj ,Uj) is the loss value on removed dataset Uj .
Since the local model wj is a trained local optimizer on
Dj , the gradient ∇Lj(wj ,Dj) is approximately zero. Thus,
we can calculate the approximation of gradient ∇Lu

j (wj ,Du
j)

with respect to wj in Eq. (11).

∇Lu
j (wj ,Du

j) = − |Uj |
|Du

j |
· ∇Lj(wj ,Uj). (11)

In this way, we only need to perform gradient computation for
those removed data in Uj , which is much less than original
method calculating on all remaining data.

Furthermore, the hessian matrix of loss function on Du
j can

be calculated with the removed data Uj as well. The second
order derivative of Eq. (10) can be written as

|Dj | · ∇2Lj(wj ,Dj) =|Du
j | · ∇2Lu

j (wj ,Du
j)

+ |Uj | · ∇2Lj(wj ,Uj). (12)

Accordingly, we have the hessian matrix H of Lu
j (wj ,Du

j) as

H =
|Dj |
|Du

j |
· ∇2Lj(wj ,Dj)−

|Uj |
|Du

j |
· ∇2Lj(wj ,Uj). (13)

Because the first term ∇2Lj(wj ,Dj) can be calculated of-
fline before unlearning process starts, the unlearning pro-
cess only needs to calculate the second-order derivative for
∇2Lj(wj ,Uj), which can save more computation cost.

With the gradient ∇Lu
j (wj ,Du

j) obtained in Eq. (11) and
the hessian matrix H , the local client j can unlearn Uj via
Newton’s method to get w̄u

j :

w̄u
j =wj −H−1∇Lu

j (wj ,Du
j)

=wj +
|Uj |
|Du

j |
H−1∇Lj(wj ,Uj), (14)

where w̄u
j is the temporarily unlearned model of client j

and is uploaded to the server for next step operation. In
real implementation, the calculation in Eq. (14) is estimated
through approximate hessian as solved in [36], [37] to save
time. The computation process of the above local model
unlearning is presented in lines 1-5 of Algorithm 2.

Algorithm 2 Approximate Federated Unlearning (Appro-Fun)
Input: the trained model w from Algorithm 1, the number of
clients K, the unlearning request Uj , parameters ϵ and δ to
calculated σ
Output: the unlearned federated model w̃u

1: local client executes:
2: compute gradient ∇Lu

j (wj ,Du
j) as Eq. (11)

3: compute hessian matrix H as Eq. (13)
4: update local model w̄u

j of client j as Eq. (14)
5: upload w̄u

j to server
6: server executes:
7: calculate w̄u = w − |Dj |

|D| (wj − w̄u
j)

8: noise perturbation w̃u ← w̄u +N (0, σ2I)
9: return unlearned federated model w̃u

B. Federated Model Perturbation

The local model unlearning step only processes the unlearn-
ing request at local client j’ side, which is not enough to
remove private data in the federated setting. The federated
model still needs a further operation to remove the impact of
unlearned dataset Uj as shown in lines 6-8 of Algorithm 2.
Upon receiving the uploaded model parameter w̄u

j from client
j, a new federated model w̄u is aggregated at the server.
This federated model w̄u is treated as a temporarily unlearned
version of the previously trained federated model w, (i.e., the
output of Algorithm 1). Recall that in Definition 1, approxi-
mate unlearning requires that the unlearned model w̄u and the
retrained model wu should be indistinguishable. While, given
an Uj , w̄u will be directly calculated from Uj and w̄u

j , so the
distance between w̄u and wu is also deterministic [25]. To this
end, w̄u should be obfuscated into a random range by adding
differentially private noise to reach indistinguishability.

To achieve indistinguishability between the temporarily un-
learned model w̄u and the model wu retrained from scratch,
noise scale should be set according to the distance ∥wu−w̄u∥.
Actually, ∥wu − w̄u∥ is similar to the global sensitivity of
differential privacy [38], which can guide the noise scale
adding into w̄u. Specifically, Theorem A.1 in [38] approves
the range of σ for (ϵ, δ)-differentially private mechanisms.
Thus, with the similar analysis for (ϵ, δ)-approximate federated
unlearning (see line 8 of Algorithm 2), the noise scale σ should
satisfy

σ ≥
max ∥wu − w̄u∥

√
2 ln(1.25/δ)

ϵ
. (15)

Since the clients’ unlearning requests are unpredictable to
the FL system, it is hard or impossible to obtain the exact value
of max ∥wu−w̄u∥. In stead, we can estimate the upper bound
of ∥wu − w̄u∥ for noise addition without losing too much
model utility after unlearning. In the following, we present
theoretical analysis on the upper bound of ∥wu− w̄u∥ as well
as the performance of output unlearned model.

Lemma 1. Let w be the model parameter of Algorithm 1
trained on the original dataset D and wu be the model
parameter retrained on the remaining dataset Du = D \ Uj .

4

Then, the distance between w and wu is bounded by Eq. (16):

∥w − wu∥ ≤ 2mι

|D|τ , (16)

where m is the size of unlearning dataset Uj , ι and τ are
constant given in Section III.

Proof. Without loss of generality, we assume the unlearning
request is from a client j who holds dataset Dj .

The loss functions of client j on dataset Dj and the
remaining dataset Du

j are defined as follows:

Lj(w,Dj) =
1

|Dj |
∑

(x,y)∈Dj

l(w, (x, y)) (17)

Lu
j (w,Du

j) =
1

|Du
j |

∑
(x,y)∈Du

j

l(w, (x, y)) (18)

where |Du
j | is the size of dataset Du

j = Dj \ Uj . Let
wj = argminw∈W

1
|Dj |

∑
(x,y)∈Dj

l(w, (x, y)) be the local
minimizer of Eq. (17) and the local minimizer of Eq. (18)
be wu

j = argminw∈W
1

|Du
j |

∑
(x,y)∈Du

j
l(w, (x, y)). Thus, we

can have the following equation

Lj(w
u
j ,Dj)− Lj(wj ,Dj)

=
1

|Dj |
∑

(x,y)∈Dj

l(wu
j , (x, y))−

1

|Dj |
∑

(x,y)∈Dj

l(wj , (x, y))

=
1

|Dj |
[

∑
(x,y)∈Du

j

l(wu
j , (x, y))−

∑
(x,y)∈Du

j

l(wj , (x, y))

+
∑

(x,y)∈Uj

l(wu
j , (x, y))−

∑
(x,y)∈Uj

l(wj , (x, y))]

=
1

|Dj |
[|Du

j |(Lu
j (w

u
j ,Du

j)− Lu
j (wj ,Du

j))

+
∑

(x,y)∈Uj

l(wu
j , (x, y))−

∑
(x,y)∈Uj

l(wj , (x, y))]

(i)

≤ 1

|Dj |
[

∑
(x,y)∈Uj

l(wu
j , (x, y))−

∑
(x,y)∈Uj

l(wj , (x, y))]

(ii)

≤ mι

|Dj |
∥wu

j − wj∥, (19)

where the inequality (i) holds because wu
j is the minimizer

of Lu
j (w

u
j ,Du

j) defined above, and (ii) holds because the loss
function l(w, (x, y)) is ι-Lipschitz.

Additionally, based on the assumption of strong convexity
(assumption (3)), we can get the following equation

Lj(w
u
j ,Dj)− Lj(wj ,Dj) ≥

τ

2
∥wu

j − wj∥2 (20)

Combining the Eq. (19) and Eq. (20), we can derive the
following inequality
τ

2
∥wu

j − wj∥2 ≤ Lj(w
u
j ,Dj)− Lj(wj ,Dj) ≤

mι

|Dj |
∥wu

j − wj∥

⇒ ∥wu
j − wj∥ ≤ 2mι

|Dj |τ
(21)

This inequality Eq. (21) indicates that the change of model
parameter on client j before and after unlearning is bounded.
Then, the unlearned model of client j is uploaded to server for
aggregation, where the weight of client j is at most |Dj |

|D| . Thus,

the federated model on server before and after unlearning Uj
is bounded in a range by the following inequality

∥wu − w∥ ≤ |Dj |
|D|
· 2mι

|Dj |τ
=

2mι

|D|τ
. (22)

This finishes the proof of Lemma 1.

Then, the upper bound of ∥w − wu∥ is used to find the
distance between wu and w̄u.

Theorem 1. Let wu be the model parameter retrained from
scratch on dataset Du and w̄u be the approximately unlearned
federated model in Line 7 of Algorithm 2. The distance
between wu and w̄u is bounded by Eq. (23):

∥wu − w̄u∥ ≤ 2m2ι2M

|D||Dj |τ3
, (23)

where m is the size of unlearning dataset Uj and M is the
Hessian-Lipschitz constant.

The proof of Theorem 1 is presented in online Appendix A.
By combining Eq. (15) and Eq. (23), we obtain the setting

for σ in Appro-Fun algorithm:

σ ≥
2m2ι2M

√
2 ln(1.25/δ)

|D||Dj |τ3ϵ
. (24)

Although our Appro-Fun algorithm injects gaussian noise
during unlearning process, the unlearning effectiveness can be
still kept in an acceptable range with performance guarantee,
which is measured from two aspects. On the one hand, we use
the loss difference between the unlearned model w̃u and the
optimal model that is retrained from scratch on Du to quantify
performance gap and analyze it in Theorem 2.

Theorem 2. Let L(wu∗) be the loss of the optimal model
retrained from scratch on remaining dataset Du and L(w̃u)
be loss of unlearned model w̃u output by Appro-Fun Algorithm
(i.e., Algorithm 2). The loss distance can be bounded by:

E{L(w̃u)− L(wu∗)} ≤ 2m2ι3M

|D||Dj |τ3
+

2m2ι2M
√

2d ln(1.25/δ)

|D||Dj |τ3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (25)

This means that our unlearned model has a bounded per-
formance loss compared with the optimal retained model.

The detailed proof of Theorem 2 can be found in online
Appendix B.

On the other hand, we use the loss difference between the
unlearned model w̃u and the optimal original federated model
trained on original dataset D to evaluate the influence of data
deletion, which is proved in Theorem 3.

Theorem 3. Let L(w∗) be the loss of the optimal model
trained on original dataset D and L(w̃u) be the loss of
unlearned model w̃u output by Appro-Fun Algorithm (i.e.,
Algorithm 2). The loss distance can be bounded by:

E{L(w̃u)− L(w∗)} ≤ m|Dj |ι2

(nj −m)|D|τ +
2m2ι3M

√
2d ln(1.25/δ)

|D||Dj |τ3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (26)

5

https://www.dropbox.com/scl/fi/93zhk3z4qbw13n6e15vh7/Appendix.pdf?rlkey=c23v6s87w8fyzl06chdb6s5p4&dl=0
https://www.dropbox.com/scl/fi/93zhk3z4qbw13n6e15vh7/Appendix.pdf?rlkey=c23v6s87w8fyzl06chdb6s5p4&dl=0
https://www.dropbox.com/scl/fi/93zhk3z4qbw13n6e15vh7/Appendix.pdf?rlkey=c23v6s87w8fyzl06chdb6s5p4&dl=0

TABLE I: Structure of neural networks

L F-MNIST Model CIFAR-10 Model

1 (5, 5)× 20, Conv, ReLu (5, 5)× 32, Conv, ReLu
2 (2, 2), Maxpooling (2, 2), Maxpooling
3 (5, 5)× 50, Conv, Leaky ReLU (5, 5)× 64, Conv, Leaky ReLU
4 (2, 2), Maxpooling (2, 2), Maxpooling
5 opt× 256, Dense, Leaky ReLU (5, 5)× 128, Conv, Leaky ReLU
6 256× 10, Dense (2, 2), Maxpooling
7 opt× 256, Dense, Leaky ReLU
8 256× 10, Dense

Here nj − m is the size of dataset Du
j = Dj \ Uj . This

conclusion implies that compared with the optimal original
model, the performance loss brought by data removal via
our Appro-Fun algorithm is bounded. The detailed proof of
Theorem 3 can be found in online Appendix C.

V. EXPERIMENTS

In this section, we conduct intensive experiments to validate
our Appro-Fun algorithm from unlearning effectiveness and
efficiency aspects.

A. Experiment Settings

Fashion-MNIST dataset [39] and CIFAR-10 [40] dataset are
adopted in our experiments. The experiments are implemented
mainly by Pytorch and evaluated on Google Colab Platform
with Tesla T4 GPU. Model structures of Fashion-MNIST and
CIFAR-10 datasets is shown in the following Table I. The
source code will be made publicly available once accepted.

1) Learning and Unlearning Scenario: In the federated
learning system, we set the number of clients K to be 10,
20, and 50. The training dataset is separated to 50 disjoint
shards with different number of data points and different class
labels. This is to simulate the real application scenario of
federated learning in non-i.i.d. settings. For different number
of clients K in the system, we randomly pick K shards of data
without repetition and assign to each client as local dataset.
By this setting, we simulate the realistic application scenario,
that is, the more participant clients, the more training data.
Our proposed Appro-Fun algorithm can support unlearning
from multiple clients, each of which may submit multiple
unlearning requests. For evaluation, 10% × K clients are
randomly selected, and each of them submit 5 unlearning
requests, so there are 0.5K unlearning requests in total. These
requests are processed via Algorithm 2 one-by-one. Notably,
in practice, the unlearned data should be a small portion of a
client’s local database, otherwise, the motivation of performing
unlearning may not be sufficient, and the effectiveness and
efficiency of unlearning may not be good [11], [12]. So, for
each selected client who request unlearning, the total number
of unlearned data in the 5 requests is at most 20% of his/her
local dataset, i.e., the portion of unlearned data is p ≤ 20%.

2) Baseline Models: As an exact and most effective un-
learning method, retraining the federated model from scratch
on the remaining dataset Du is adopted as the first baseline,
which can be defined as A u(A (D),Uj ,M) = A (Du). In

addition, to evaluate our Appro-Fun algorithm, one state-of-
the-art approximate federated unlearning method published in
INFOCOM 2022 [41], is selected for comparing unlearning
performance. This baseline has settings similar to our problem:
(i) both use approximate hessian matrix to calculate unlearned
models on local client side, and (ii) both upload the local
unlearned models to the server server for aggregation. But
some techniques of the baseline are different from ours: (i) the
baseline uses all remaining data to approximate the diagonal
hessian matrix, and (ii) all local clients’ models in the baseline
method need to be updated.

B. Unlearning Effectiveness of Appro-Fun

In this section, we evaluate the effectiveness of Appro-Fun
algorithm in terms of SAPE, model difference, loss difference,
and privacy leakage.

1) SAPE Comparison: We adopt Symmetric Absolute Per-
centage Error (SAPE) to measure the accuracy difference
between the retrained federated model and the unlearned fed-
erated model, which is used as an effectiveness metric in many
unlearning literatures [19], [21], [41]. SAPE is calculated as:
SAPE(Acc1, Acc2) = |Acc1−Acc2|

|Acc1|+|Acc2| × 100% with Acc1 and
Acc2 being two accuracy values. SAPE computed on different
datasets can address unlearning effectiveness from different
aspects: (i) for the test data, a smaller SAPE value means the
accuracy of unlearned model is closer to that of the retrained
model, indicating a better prediction result of the unlearned
model; while (ii) for the unlearned data, a smaller SAPE value
means the unlearned model contains less information about the
removed data, leaking less privacy about the removed data.

We evaluate the SAPE values of Appro-Fun algorithm
and baseline by changing unlearning portion p. First, the
SAPE value on test data of Fashion-MNIST dataset is shown
in Fig. 2(a), where the unlearning portion p is set to be
{0.05, 0.1, 0.15, 0.2}. We can see that the SAPE value gets
increased along with the increase of unlearning portion p,
because when more data is removed, the difference between
unlearned model and the retrained model becomes larger,
increasing difference in model accuracy. Meanwhile, when
more data is removed, the larger scale noise is injected in
our Appro-Fun’s unlearned models (see Eq. (24)), which also
causes more loss on prediction accuracy. Therefore, the un-
learned models of our Appro-Fun algorithm have a drastically
increased SAPE value when p gets larger, e.g., p = 0.2. Then,
comparing the unlearned models with different ϵ in Fig. 2(a),
we can find that a larger ϵ can achieve a smaller SAPE
value, meaning the unlearned model’s prediction accuracy is
closer to that of the retrained model. The reason is that a
larger ϵ allows more relaxed approximation and less noise
injection into the unlearned model, which can help obtain more
accurate prediction. In addition, even though the SAPE value
of the baseline approximate method is increasing slowly, our
Appro-Fun algorithm can still achieves smaller SAPE values
when p is smaller. The reason is that the baseline adopts a
diagonal hessian matrix for approximate unlearning operation,
which loses too much useful information during unlearning

6

https://www.dropbox.com/scl/fi/93zhk3z4qbw13n6e15vh7/Appendix.pdf?rlkey=c23v6s87w8fyzl06chdb6s5p4&dl=0

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7
SA

PE
 on

 te
st

da
ta

U n l e a r n i n g p o r t i o n p

 A p p r o - F u n (ε= 5)
 A p p r o - F u n (ε= 1 0)
 A p p r o - F u n (ε= 1 5)
 B a s e l i n e

(a) SAPE on test data of F-MNIST

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

SA
PE

 on
 un

lea
rne

d d
ata

U n l e a r n i n g p o r t i o n p

 A p p r o - F u n (ε= 5)
 A p p r o - F u n (ε= 1 0)
 A p p r o - F u n (ε= 1 5)
 B a s e l i n e

(b) SAPE on unlearned data of F-
MNIST

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

SA
PE

 on
 te

st
da

ta

U n l e a r n i n g p o r t i o n p

 A p p r o - F u n (ε= 5)
 A p p r o - F u n (ε= 1 0)
 A p p r o - F u n (ε= 1 5)
 B a s e l i n e

(c) SAPE on test data of CIFAR-10

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

SA
PE

 on
 un

lea
rne

d d
ata

U n l e a r n i n g p o r t i o n p

 A p p r o - F u n (ε= 5)
 A p p r o - F u n (ε= 1 0)
 A p p r o - F u n (ε= 1 5)
 B a s e l i n e

(d) SAPE on unlearned data of CIFAR-
10

Fig. 2: SAPE comparison between Appro-Fun and baseline with different unlearning portion p and ϵ.

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0 0 0

0 . 0 0 0 1

0 . 0 0 0 2

0 . 0 0 0 3

0 . 0 0 0 4

0 . 0 0 0 5

Mo
de

l D
iffe

ren
ce

U n l e a r n i n g p o r t i o n p

 A p p r o - F u n (K = 1 0)
 B a s e l i n e (K = 1 0)
 A p p r o - F u n (K = 5 0)
 B a s e l i n e (K = 5 0)

(a) Model difference with different p
and K on F-MNIST

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0
0 . 0 0 0 0 0

0 . 0 0 0 0 2

0 . 0 0 0 0 4

0 . 0 0 0 0 6

0 . 0 0 0 0 8

Mo
de

l D
iffe

ren
ce

U n l e a r n i n g p o r t i o n p

 A p p r o - F u n (K = 1 0)
 B a s e l i n e (K = 1 0)
 A p p r o - F u n (K = 5 0)
 B a s e l i n e (K = 5 0)

(b) Model difference with different p
and K on CIFAR-10

Fig. 3: Model difference between Appro-Fun and baseline.

and causes low accuracy. While when p grows, the baseline
is slightly better than our Appro-Fun for smaller ϵ settings
(e.g., ϵ=5, 10). This is because a larger p and a smaller ϵ
imply more noise perturbation in our algorithm, reducing the
prediction accuracy of our unlearned models.

Fig. 2(b) depicts the trend of SAPE on unlearned data in
Fashion-MNIST dataset. Similar to the results on test data,
the SAPE value is getting larger when p increases. When
comparing different ϵ, the larger ϵ, the less noise injection,
which reduces the SAPE values. Compared with the baseline
unlearned model, our unlearned model has smaller SAPE val-
ues in most settings (except p=0.2, ϵ=5 in Fig. 2(b)). Moreover,
it is worth noticing that the SAPE values on unlearned data
are relatively smaller than those on test data. This means that
our unlearned model performs more similarly to the retrained
model on the removed data, which indicates a better unlearning
effectiveness. Similar results of SAPE on CIFAR-10 dataset
are provided in Fig. 2(c) and Fig. 2(d). In both test data
and unlearned data, our Appro-Fun algorithm outperforms the
baseline for all p value and most ϵ (except p=0.2 on unlearned
data). As a summary, our Appro-Fun algorithm is better than
the baseline method in most case of federated unlearning
settings, especially when ϵ is set reasonably.

2) Model and Loss Comparison: As pointed out by [26],
the SAPE value may not be enough to qualify the un-
learning effectiveness. For complex machine learning models,
the difference between unlearned model parameters and the

retrained model parameters is also a vital metric. Therefore, we
calculate the average element-wise model difference between
the unlearned models (i.e., output by Appro-Fun and the
baseline) and the retrained model as another measurement of
unlearning effectiveness. As shown in Fig. 3(a), along with
the increase of p, the difference between the unlearned model
and the retrained model is getting larger for both our Appro-
Fun algorithm and the baseline. This is because when deleting
more data, noise injection and approximate hessian matrix
cause larger error, which enlarges the distance between the
unlearned model and the retrained model. While our Appro-
Fun models achieve smaller difference than the baseline, which
means better model similarity to the fully retrained model.

On the other hand, the number of clients K varies in
the unlearning processes. A larger number of clients in FL
system can reduce the model difference thanks to federated
aggregation. In Fig. 3(a), with the same p, the model differ-
ences when K=50 are always smaller than that when K=10,
which means more involved clients can mitigate the model
difference of unlearned federated models by averaging. This
critical findings indicates the approximate federated unlearning
may have better effectiveness in the federated system with
more clients. Similar results can be observed from Fig. 3(b),
where our Appro-Fun algorithm has smaller model difference
compared with the baseline. While, only when p=0.2, our
unlearned model difference is slightly larger than the baseline.
This may be caused by the injected noise of our Appro-Fun
algorithm as we proved in Theorem 1, the larger amount of
unlearned data, the larger model difference and differentially
private noise scale. To sum up, our Appro-Fun algorithm
produces better unlearned model than the baseline method in
terms of model difference at most unlearning settings.

In addition, the prediction loss on test data is adopted as
another metric for unlearning effectiveness. After processing
each unlearning request, we test the loss of all unlearned
models (including Appro-Fun, Baseline, and Retraining) on
the same test dataset so as to undertand how well an unlearned
model performs on future prediction. In Fig. 4(a), the loss on
test data of all unlearning methods increase as the number of
unlearning requests increases, because there are less training
data available and more approximate error. For our Appro-Fun

7

TABLE II: The speed-up ratio comparison between Appro-Fun and baseline on Fashion-MNIST and CIFAR-10 datasets.

Baseline Liu et al. Our Appro-Fun Algorithm
Dataset Retraining p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.05 p = 0.1 p = 0.15 p = 0.2

F-MNIST 1255.71 (s) 2.17× 2.23× 2.25× 2.36× 6.58× 6.32× 5.24× 4.75×
CIFAR-10 2851.54 (s) 5.47× 5.70× 6.42× 7.08× 12.13× 11.07× 9.66× 8.81×

0 5 1 0 1 5 2 0 2 5
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

Lo
ss

on
 te

st
da

ta

o f u n l e a r n i n g r e q u e s t s

 R e t r a i n
 A p p r o - F u n (ε= 5)
 A p p r o - F u n (ε= 1 0)
 A p p r o - F u n (ε= 1 5)
 B a s e l i n e

(a) Loss on test F-MNIST

0 5 1 0 1 5 2 0 2 5
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5
1 . 6
1 . 7
1 . 8

Lo
ss

on
 te

st
da

ta

o f u n l e a r n i n g r e q u e s t s

 R e t r a i n
 A p p r o - F u n (ε = 5)
 A p p r o - F u n (ε = 1 0)
 A p p r o - F u n (ε = 1 5)
 B a s e l i n e

(b) Loss on test CIFAR-10

Fig. 4: Loss comparison on test data.

TABLE III: MIA accuracy (%) for deleted data on different models

Baseline Our Appro-Fun Algorithm
Dataset Retrained Liu et al. ϵ=5 ϵ=10 ϵ=15

F-MNIST 51.54±2.27 62.29±1.49 46.49±1.03 56.33±2.15 60.31±1.76
CIFAR-10 53.03±1.83 69.21±1.22 49.60±1.51 58.17±2.11 63.04±1.27

algorithm, when ϵ is larger (e.g., ϵ=10, 15), the loss is not
only smaller than the baseline, but also closer to the retrained
model, showing its unlearning effectiveness. Only when ϵ is
small (i.e., ϵ=5), our Appro-Fun performs slightly worse than
the baseline as the number of unlearning requests increases.
From the results in Fig. 4(b), the same conclusion can be
drawn, which means our Appro-Fun algorithm can achieve
much smaller loss on test data when ϵ is larger.

3) Privacy Leakage Comparison: Since the purpose of
unlearning is to remove the private information of deleted
data, membership inference attack (MIA) is a suitable metric
to evaluate the privacy level in many related works [42]–
[44]. MIA infers whether a data sample is in the training
dataset of a model, so for the deleted data, a lower MIA
accuracy (around 50%) means that the unlearning algorithm
has stronger privacy protection. In Table III, for all ϵ, our
Appro-Fun algorithm obtains lower MIA accuracy values than
the baseline; especially when ϵ is smaller (e.g., ϵ=5) Appro-
Fun is even better. The reason of Appro-Fun’s success is that
we not only delete private data at local client side but also
introduce differential privacy on server side, which provide
enhanced protection for the unlearned data.

C. Unlearning Efficiency of Appro-Fun

First of all, the original federated model is trained to
converge using Algorithm 1. Then, we unlearn the same
unlearning requests on the federated model through retraining,
Appro-Fun, and the baseline separately. Finally, we calculate
the average time to process one unlearning request in all
algorithms. The speed-up ratio is the ratio of the average time

of the retraining method to the average time of the unlearning
algorithm. In Table II, the column “Retraining” provides the
absolute time cost (in seconds) of the retraining method, and
the speed-up ratio are given in the following columns with
different p values. On both datasets with all p values, our
unlearning speed-up ratio is higher than that of the baseline.
This is because our Appro-Fun adopts a simpler approximation
updating strategy with less calculation (see Section IV-A) than
the method used by the baseline, reaching faster computation.
Moreover, the speed-up ratio of Appro-Fun is decreased as p
increases. The reason is that when p gets larger, there are more
data needs to be unlearned, yielding more re-computation cost
for gradient and hessian. On the other hand, the speed-up ratio
is higher in complex dataset (CIFAR-10) than simple one (F-
MNIST). For a complex dataset, retraining process requires
more recalculation of gradient for each sample, which greatly
increases the time cost of retraining from scratch. Thus, our
Appro-Fun algorithm can achieve better unlearning efficiency
than the baseline method and deliver higher speed-up ratio on
complex datasets than simple ones.

VI. CONCLUSION & FURTHER WORK

In this paper, we study the federated unlearning problem
and propose an (ϵ, δ)-approximate federated unlearning al-
gorithm, Appro-Fun. In Appro-Fun, local model unlearning
and federated model perturbation methods are designed by
leveraging approximate Newton’s updating and differential pri-
vacy, respectively. We theoretically approve the performance
guarantee of Appro-Fun in terms of training convergency.
Extensive experiments are conducted on real datasets and show
that our Appro-Fun algorithm outperforms the state-of-the-art
baseline in terms of effectiveness and efficiency. As a pilot
work on federated unlearning, we suppose that all clients’
local datasets are disjoint, which facilitates data deletion at the
server without request conflict (i.e., one client wants to remove
a data instance while another does not want). Considering local
clients’ data characteristics (such as overlapping, correlated,
and common datasets) in reality, more complicated scenarios
will be investigated in our next-step work.

REFERENCES

[1] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut,
and D. Novotny, “Common objects in 3d: Large-scale learning and
evaluation of real-life 3d category reconstruction,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
10 901–10 911.

[2] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
understanding rating dimensions with review text,” in Proceedings of
the 7th ACM conference on Recommender systems, 2013, pp. 165–172.

[3] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer International
Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.

8

[4] D. o. J. State of California, “the california consumer privacy act
(ccpa),” 2000. [Online]. Available: https://oag.ca.gov/privacy/ccpa

[5] F. T. Commission et al., “California company settles ftc allegations it
deceived consumers about use of facial recognition in photo storage
app,” 2021.

[6] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on computer and communications security, 2017, pp. 587–
601.

[7] Y. Wang, C. Si, and X. Wu, “Regression model fitting under differential
privacy and model inversion attack,” in Twenty-fourth international joint
conference on artificial intelligence, 2015.

[8] M. A. Rahman, T. Rahman, R. Laganière, N. Mohammed, and Y. Wang,
“Membership inference attack against differentially private deep learning
model.” Trans. Data Priv., vol. 11, no. 1, pp. 61–79, 2018.

[9] Z. Xiong, Z. Cai, D. Takabi, and W. Li, “Privacy threat and defense
for federated learning with non-iid data in aiot,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 2, pp. 1310–1321, 2021.

[10] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,” arXiv
preprint arXiv:2101.03961, 2021.

[11] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 463–480.

[12] A. Ginart, M. Guan, G. Valiant, and J. Y. Zou, “Making ai forget you:
Data deletion in machine learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[13] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning. PMLR, 2021, pp.
1092–1104.

[14] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified data
removal from machine learning models,” in International Conference on
Machine Learning. PMLR, 2020, pp. 3832–3842.

[15] Z. Izzo, M. Anne Smart, K. Chaudhuri, and J. Zou, “Approximate data
deletion from machine learning models,” in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, A. Banerjee and K. Fuku-
mizu, Eds., vol. 130. PMLR, 13–15 Apr 2021, pp. 2008–2016.

[16] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 141–159.

[17] N. Aldaghri, H. Mahdavifar, and A. Beirami, “Coded machine unlearn-
ing,” IEEE Access, vol. 9, pp. 88 137–88 150, 2021.

[18] S. Schelter, S. Grafberger, and T. Dunning, “Hedgecut: Maintaining
randomised trees for low-latency machine unlearning,” in Proceedings
of the 2021 International Conference on Management of Data, 2021,
pp. 1545–1557.

[19] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning. PMLR, 2020, pp. 10 355–10 366.

[20] L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, 2021, pp. 11 516–11 524.

[21] C. Wu, S. Zhu, and P. Mitra, “Federated unlearning with knowledge
distillation,” arXiv preprint arXiv:2201.09441, 2022.

[22] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic Learn-
ing Theory. PMLR, 2021, pp. 931–962.

[23] E. Ullah, T. Mai, A. Rao, R. A. Rossi, and R. Arora, “Machine
unlearning via algorithmic stability,” in Conference on Learning Theory.
PMLR, 2021, pp. 4126–4142.

[24] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites,
“Adaptive machine unlearning,” Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021.

[25] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember what
you want to forget: Algorithms for machine unlearning,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[26] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[27] J. Wang, S. Guo, X. Xie, and H. Qi, “Federated unlearning via class-
discriminative pruning,” in Proceedings of the ACM Web Conference
2022, 2022, pp. 622–632.

[28] Y. Chen, S. Zhang, and B. K. H. Low, “Near-optimal task selection for
meta-learning with mutual information and online variational bayesian
unlearning,” in International Conference on Artificial Intelligence and
Statistics. PMLR, 2022, pp. 9091–9113.

[29] J. Gong, J. Kang, O. Simeone, and R. Kassab, “Forget-svgd: Particle-
based bayesian federated unlearning,” in 2022 IEEE Data Science and
Learning Workshop (DSLW). IEEE, 2022, pp. 1–6.

[30] Q. P. Nguyen, R. Oikawa, D. M. Divakaran, M. C. Chan, and B. K. H.
Low, “Markov chain monte carlo-based machine unlearning: Unlearning
what needs to be forgotten,” arXiv preprint arXiv:2202.13585, 2022.

[31] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[32] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454–3469, 2020.

[33] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[34] R. Hu, Y. Guo, E. P. Ratazzi, and Y. Gong, “Differentially private
federated learning for resource-constrained internet of things,” arXiv
preprint arXiv:2003.12705, 2020.

[35] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in International conference on machine learning.
PMLR, 2017, pp. 1885–1894.

[36] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The
elements of statistical learning: data mining, inference, and prediction.
Springer, 2009, vol. 2.

[37] A. Ly, M. Marsman, J. Verhagen, R. P. Grasman, and E.-J. Wagenmakers,
“A tutorial on fisher information,” Journal of Mathematical Psychology,
vol. 80, pp. 40–55, 2017.

[38] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[39] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[40] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[41] Y. Liu, L. Xu, X. Yuan, C. Wang, and B. Li, “The right to be forgotten
in federated learning: An efficient realization with rapid retraining,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions, 2022, pp. 1749–1758.

[42] S. Fu, F. He, and D. Tao, “Knowledge removal in sampling-
based bayesian inference,” in The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. [Online]. Available: https:
//openreview.net/forum?id=dTqOcTUOQO

[43] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When machine unlearning jeopardizes privacy,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 896–911.

[44] G. Liu, X. Ma, Y. Yang, C. Wang, and J. Liu, “Federaser: Enabling
efficient client-level data removal from federated learning models,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), 2021, pp. 1–10.

[45] A. Beck, First-order methods in optimization. SIAM, 2017.

9

https://oag.ca.gov/privacy/ccpa
https://openreview.net/forum?id=dTqOcTUOQO
https://openreview.net/forum?id=dTqOcTUOQO

APPENDIX

A. Proof of Theorem 1

Proof. Based on Eq. (17) and Eq. (18), we can calculate the
Taylor’s expansion for ∇Lu

j (w
u
j ,Du

j) at point wj as follows,

∇Lu
j (w

u
j ,Du

j) = ∇Lu
j (wj ,Du

j) +∇2Lu
j (wj ,Du

j)[w
u
j − wj]

+
1

2
∇3Lu

j (wj ,Du
j)[w

u
j − wj]

2

(i)⇒ ∥−∇Lu
j (wj ,Du

j)−H[wu
j − wj]∥

=
1

2
∇3Lu

j (wj ,Du
j)∥wu

j − wj∥2

⇒ ∥∇Lu
j (wj ,Du

j) +H[wu
j − wj]∥

(ii)

≤ M

2
∥wu

j − wj∥2. (27)

The reason of (i) is that wu
j is the minimizer of loss function

Lu
j (w

u
j ,Du

j), so ∇Lu
j (w

u
j ,Du

j) is zero. The inequality (ii)
holds because the loss function is M -Hessian Lipschitz.

Moreover, we can rewrite the above term ∇Lu
j (wj ,Du

j) as

∇Lu
j (wj ,Du

j) =
1

|Du
j |

∑
(x,y)∈Du

j

∇l(wj , (x, y))

=
1

|Du
j |
[

∑
(x,y)∈Dj

∇l(wj , (x, y))−
∑

(x,y)∈Uj

∇l(wj , (x, y))]

=
1

|Du
j |
[|Dj |∇Lj(wj ,Dj)−

∑
(x,y)∈Uj

∇l(wj , (x, y))]

(i)
= − 1

|Du
j |

∑
(x,y)∈Uj

∇l(wj , (x, y)) = − |Uj |
|Du

j |
∇Lj(wj ,Uj), (28)

where the equality (i) holds because wj is the minimizer of
loss function Lj(wj ,Dj).

Next, let β be the difference between wu
j and w̄u

j , that is,
wu

j − w̄u
j = β. Since in the Line 4 of Algorithm 2 we have

w̄u
j = wj +

|Uj |
|Du

j |
H−1∇Lj(wj ,Uj), the following equation is

obtained,

wu
j − w̄u

j = wu
j − [wj +

|Uj |
|Du

j |
H−1∇Lj(wj ,Uj)] = β

⇒ wu
j − wj =

|Uj |
|Du

j |
H−1∇Lj(wj ,Uj) + β (29)

Substituting Eq. (28) and Eq. (29) into Eq. (27), we can get
the inequality

∥ − |Uj |
|Du

j |
∇Lj(wj ,Uj) +H[

|Uj |
|Du

j |
H−1∇Lj(wj ,Uj) + β]∥

≤ M

2
∥wu

j − wj∥2. (30)

Rearranging Eq. (30), we can simplify the inequality to
Eq. (31)

∥Hβ]∥ = ∥∇2Lu
j (wj ,Du

j)β]∥ ≤
M

2
∥wu

j − wj∥2. (31)

Due to the τ -strongly convexity of loss function, we can have
a corollary [45]

∥∇2Lu
j (wj ,Du

j)β]∥ ≥ τ∥β∥. (32)

Combining the Eq. (31) and Eq. (32), we can have the upper
bound distance between wu

j and w̄u
j

∥wu
j − w̄u

j ∥ = ∥β∥ ≤
M

2τ
∥wu

j − wj∥2. (33)

Here, ∥wu
j − wj∥ is proved with an upper bound in Eq. (21)

of Lemma 1. After the aggregation on server side, we can get
the distance between wu and w̄u in the following equation,

∥wu − w̄u∥ ≤ 2m2ι2M

|D||Dj |τ3
. (34)

This ends the proof of Theorem 1.

B. Proof of Theorem 2
Proof.

E{L(w̃u)− L(wu∗)}
=E{L(w̃u)− L(wu) + L(wu)− L(wu∗)}
≤E{L(w̃u)− L(wu)}+ E{L(wu)− L(wu∗)}
(i)

≤E{L(w̃u)− L(wu)}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2)

(ii)

≤ ιE{∥w̃u − wu∥}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2) (35)

where the inequality (i) holds because the convergence bound
of federated learning is proved by [33], and the inequality (ii)
holds due to the Lipschitzness of loss function l(w, (x, y)).

Then, based on Theorem 1, we can calculate the expectation
of ∥w̃u − wu∥ as follows

E{∥w̃u − wu∥} =E{∥w̃u − w̄u + w̄u − wu∥}
≤E{∥w̃u − w̄u∥}+ E{∥w̄u − wu∥}

≤E{∥N∥}+ 2m2ι2M

|D||Dj |τ3

≤
√
dσ +

2m2ι2M

|D||Dj |τ3
(36)

where N is the gaussian noise added in each unlearning
process as shown in Line 8 of Algorithm 2.

Combining the Eq. (35), Eq. (36) and the value of σ, we
can prove Theorem 2 as follows

E{L(w̃u)− L(wu∗)} ≤ 2m2ι3M

|D||Dj |τ3
+

2m2ι2M
√

2d ln(1.25/δ)

|D||Dj |τ3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (37)

This finishes the proof of Theorem 2.

C. Proof of Theorem 3
Proof.

E{L(w̃u)− L(w∗)}
=E{L(w̃u)− L(w) + L(w)− L(w∗)}
≤E{L(w̃u)− L(w)}+ E{L(w)− L(w∗)}
(i)

≤E{L(w̃u)− L(w)}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2)

(ii)

≤ ιE{∥w̃u − w∥}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2) (38)

10

where w is the output of Algorithm 1, the inequality (i) holds
because the convergence bound of federated learning is proved
by [33], and the inequality (ii) holds due to the Lipschitzness
of loss function l(w, (x, y)).

According to the Appro-Fun Algorithm 2, we can get

E{∥w̃u − w∥} = E{∥w̄u +N − w∥}
(i)
=E{∥ |Dj |

|D| (
|Uj |
|Du

j |
H−1∇Lj(wj ,Uj)) +N∥}

≤|Dj |
|D|

|Uj |
|Du

j |
E{∥H−1∇Lj(wj ,Uj)∥}+ E{∥N∥}

(ii)

≤ |Dj |
|D|

|Uj |
|Du

j |τ
E{∥∇Lj(wj ,Uj)∥}+ E{∥N∥}

=
|Dj |
|D|

|Uj |
|Du

j |τ
E{∥ 1

|Uj |
∑

(x,y)∈Uj

∇l(wj , (x, y))∥}+ E{∥N∥}

(iii)

≤ |Dj |
|D|

|Uj |
|Du

j |τ
|Uj |ι
|Uj |

+
√
dσ =

m|Dj |ι
(nj −m)|D|τ +

√
dσ, (39)

where N is the gaussian noise added in each unlearning pro-
cess. The expectation above is taken with respect to the dataset
D and noise N . The equation (i) is obtained from Eq. (14).
The inequality (ii) holds because of the τ -strong convexity
of loss function, which implies ∇2Lu

j (wj ,Du
j) ⪰ τI . The

inequality (iii) holds because the loss function is ι Lipschitz.
Combining the Eq. (38), Eq. (39), and Eq. (24), we can

prove Theorem 3 as follows,

E{L(w̃u)− L(w∗)} ≤ m|Dj |ι2

(nj −m)|D|τ +
2m2ι3M

√
2d ln(1.25/δ)

|D||Dj |τ3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (40)

11

	Introduction
	Related Works
	Preliminary
	Approximate Federated Unlearning
	Local Model Unlearning
	Federated Model Perturbation

	Experiments
	Experiment Settings
	Learning and Unlearning Scenario
	Baseline Models

	Unlearning Effectiveness of Appro-Fun
	SAPE Comparison
	Model and Loss Comparison
	Privacy Leakage Comparison

	Unlearning Efficiency of Appro-Fun

	Conclusion & Further Work
	References
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

