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Abstract. The surge of ubiquitous data underscores the need for Fed-
erated learning (FL), which allows distributed data entities to learn a
global model orchestrally without revealing their private local data, en-
suring the privacy and security of users. However, the performance of the
trained global model on individual clients is impaired by the heteroge-
neous nature of the client’s local data, exposed as the performance unfair-
ness in FL. Such unfairness issues grab the research community’s atten-
tion and a few recent works embark upon fair solutions via reweighting
clients during aggregation but overlooking the impact of client selection
for aggregation. To fill this gap, in this paper, a Fairness Compensation-
based FL scheme (FCFL) is proposed to alleviate the unfairness amongst
clients. In particular, the unfairness of each client during the FL train-
ing process is estimated as the accuracy difference between local perfor-
mance and global performance, and accumulated queues are calculated
for the cumulative unfairness value in each round. In addition, a fair-
ness compensation FL method is devised, which can select participating
clients dynamically and adjust the aggregation weights adaptively in each
round to guarantee fairness in the training process. Specifically, the pro-
posed FCFL scheme is a flexible framework with tunable parameters and
the FedAvg algorithm is its special case when α=0. Finally, intensive
experiments are conducted on two benchmark datasets with different
settings, demonstrating that the FCFL outperforms the state-of-the-art
baselines by improving the fairness metric up to 30.4% while maintain-
ing a competitive accuracy performance. The source code is available at
https://github.com/wlffffff/FCFL.

Keywords: Federated learning · Performance fairness · Data hetero-
geneity · Client selection · Weighting strategy.

1 Introduction

The advancement of Artificial Intelligence (AI) is driven by the ubiquitous data
generated from a wealth of devices, however, conventional machine learning typ-
ically adopts a centralized mode in data collection and training, which poses

https://github.com/wlffffff/FCFL


2 L. Wang et al.

significant challenges in multiple faucets. Firstly, uploading large amounts of
data incurs communication and storage costs [14,27] of burdened infrastructure.
Secondly, with the ever-increasing privacy and security concerns [26], it is hard
to convince unwilling data owners to share their raw data with an untrusted
service provider under this centralized paradigm [24]. Besides, pressing regula-
tions and laws are enforced by many governments on private data with stricter
data management and stewardship, such as the General Data Protection Regu-
lations (GDPR) from the European Union and Personal Information Protection
and Electronic Documents Act (PIPEDA) from Canada. To solve this dilemma,
Federated Learning (FL), as a promising solution is proposed by Google re-
cently [15]. FL is a distributed machine learning paradigm consisting of a server
and multiple clients, which can learn a global model on the server side without
access to clients’ local private data. Since the original data is kept locally rather
than being sent to a remote server, the challenges of communication, storage,
and privacy are somehow mitigated by FL, and thus broad application scenarios
are fertilized, including medical images [9], recommendation systems [22], and
the Internet of Things (IoT) [25].

Yet, FL is not the silver bullet, and some issues have emerged in recent years.
In this paper, we study the fairness aspect of FL, which is one of the major con-
cerns of FL that impedes the realistic application. As illustrated in Fig. 1, since
the global model is trained based on unknown local datasets of clients, where
divergence may exist amongst client local data and model. Therefore the per-
formance of the global model may vary across the diverse clients, causing unfair
performance (e.g., accuracy) as shown on the right side of Fig. 1. Specifically,
though the global model performs well on average, such unfairness is manifested
in those clients (referred to as vulnerable clients) who receive lower accuracy due
to biased client selection or minority in data representations.
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Fig. 1. (Left): Example of horizontal FL. (Right): Performance fairness of FL.
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To alleviate unfairness in FL, AFL is proposed by Mohri et al. [16] to optimize
the worst-performing client by minimax optimization. Inspired by fair resource
allocation in wireless networks, Li et al. [11] presented the q-FedAvg method,
which introduces a parameter q to reweight the loss of different clients. Zhao
et al. [30] proposed DRFL, which dynamically adjusts the weight assigned to
each client and is more flexible in parameter tuning. Although these works can
alleviate unfairness by adjusting weights, they often ignore the impact of client
selection in fairness. In addition, the client selection in existing methods is either
randomly done [10,15] or based on the local data amount [8,28], which may lead
to poor local performance of the global model. Therefore, it is a challenge to
design a fair FL scheme that handles client selection without incurring a negative
impact on the client side.

In this work, we propose the Fairness Compensation-based FL (FCFL) to
alleviate unfairness in FL. In each training round, the server updates the un-
fairness queue of each client, where the queues are utilized for client selection
and aggregation reweighting based on cumulative unfairness value. To our best
knowledge, this is the first work to harness fair client selection to achieve perfor-
mance fairness of FL. The contributions of this paper are summarized as follows:

– The accumulated unfairness of clients is defined during the process of FL
and unfairness queues are maintained to measure if a client is treated fairly.

– Based on the accumulated unfairness queues, a fairness compensation method
FCFL is designed to balance the client selection and aggregation reweighting,
which can improve the fairness of FL.

– Evaluations on two datasets are conducted to confirm the advantages of our
method and compare it with state-of-the-art methods. The experimental
results demonstrate the fairness and effectiveness of our proposed FCFL.

The rest of the paper is organized as follows. The related work on the fairness
of FL is discussed in Section 2. Then, the proposed FCFL method is detailed
in Section 3 with descriptions of client selection and aggregation reweighting.
Empirical evaluation is presented in Section 4, and finally Section 5 concludes
the paper.

2 Related Work

Fairness in FL can be divided into collaborative fairness [13,29], group fairness [3,
4], selection fairness [7,18], and performance fairness [11], as per different fairness
goals. In particular, collaborative fairness means that clients should be rewarded
in proportion to their contributions; group fairness aims to minimize disparities
among different groups based on sensitive attributes (e.g., gender and race);
selection fairness ensures that each client has a fair chance of being selected to
participate in training; and performance fairness seeks to reduce the variance of
global model accuracy across clients. This paper mainly focuses on performance
fairness. For a comprehensive review of the fairness in FL, please refer to the
survey paper [19] by Shi et al.
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Table 1. Related work on performance fairness of FL.

References Method Dataset

AFL (2019) [16] Minimax optimization Fashion MNIST; Adult;
Cornell movie; PTB

q-FedAvg (2019) [11] Reweighting Synthetic; Vehicle;
Sent 140; Shakespeare

FedGini (2023) [12] Objective function Synthetic; CIFAR-10;
Sent 140

DRFL (2022) [30] Reweighting Synthetic; Fashion MNIST;
Adult

Ada-FFL (2023) [2] Reweighting Synthetic; Vehicle; Sent 140

FedFa (2022) [8] Reweighting MNIST; FEMNIST; Synthetic;
Sent 140; Shakespeare

PG-FFL (2022) [21] Reweighting Fashion MNIST; CIFAR-10;
CIFAR-100

FedFV (2021) [23] Gradient projection MNIST; Fashion MNIST;
CIFAR-10

GIFAIR (2023) [28] Reweighting;
Objective function FEMNIST; Shakespeare;

FedMGDA (2022) [6] Multi-objective
optimization

Fashion MNIST; CIFAR-10;
Shakespeare; Adult

FedMDFG (2023) [17] Multi-objective
optimization

MNIST; Fashion MNIST;
CIFAR-10; CIFAR-100

FairWire+ (2024) [5] Multi-objective
optimization

CIFAR-10; CIFAR-100;
FEMNIST

2.1 Performance Fairness in FL

The vanilla FedAvg algorithm aggregates client local models by calculating a
weighted average based on the amount of training data [15], therefore causing
significant differences in model accuracy due to the data heterogeneity of differ-
ent clients. As countermeasures, AFL [16] is the first approach to improve the
fairness of FL, which used minimax optimization to maximize the performance of
the worst-performing device. However, this method cannot guarantee generaliza-
tion in large-scale settings. To improve the scalability of AFL, researchers have
proposed the q-FedAvg [11] method by introducing the parameter q for clients
reweighting to achieve better fairness. Since q-FedAvg, performance fairness has
become a pivotal problem in FL, and many methods have been proposed to
improve the fairness of q-FedAvg, including designing novel objective functions,
reweighting, eliminating gradient conflicts, and multi-objective optimization.

Designing Novel Objective Functions. FedGini [12] modified the objec-
tive function to improve fairness by introducing a Gini penalty term. GIFAIR [28]
achieved fairness by introducing a regularization term to penalize loss differences
among client groups. Ada-FFL [2] improved the objective function of q-FedAvg
by introducing regularized local loss terms and Frobenius distance to design an
adaptive fair FL.
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Reweighting. FedFa [8] combined the training accuracy and frequency to
design an appropriate weight selection algorithm and adopted double momentum
gradient optimization to accelerate the model’s convergence. PG-FFL [21] used
reinforcement learning to achieve reweighting, and automatically learned strate-
gies through a reward function constructed based on Gini coefficients and accu-
racy. Building on the q-FedAvg method, DRFL [30] proposed a novel approach,
which can dynamically adjust the weight assigned to clients. The regularization
term in GIFAIR [28] can also be viewed as a dynamic client reweighting technique
that can adaptively assign higher weights to clients with poor performance.

Eliminating Gradient Conflicts. Researchers have found that conflict-
ing gradients are one of the reasons for unfairness in FL. To address this issue,
FedFV [23] first used cosine similarity to detect gradient conflicts, and then
iteratively eliminated conflicts by modifying the direction and magnitude of gra-
dients, thereby improving the fairness of FL.

Multi-objective Optimization. FedMGDA [6] pioneered the formalization
of FL into multi-objective optimization and proposed a novel fair FL scheme us-
ing a multiple gradient descent algorithm. Under the guidance of multi-objective
optimization, FedMDFG [17] and FairWire+ [5] are also proposed. FedMDFG
can find a fair descent direction by adding a fair-driven objective, and the line
search strategy can ensure an appropriate step size. These two major designs
guarantee the fairness and robustness of the scheme. FairWire+ considered the
inherent noise induced by wireless channels and designed an algorithm based on
noisy gradients, which can find a common descent direction for all clients. We
summarize the current fair FL for performance fairness in Table 1.

2.2 Client Selection in FL

Although the above methods can relieve unfairness through various approaches,
they ignore the possible impact of client selection on the fairness of FL. Client
selection is also an important research topic, which can achieve different goals.
For instance, Power-of-Choice [1] identified clients with the highest loss in each
round and included them in training to boost model performance. GreedyFed [20]
selected clients with the highest contribution based on the Shapley value, improv-
ing model accuracy and convergence speed. By utilizing Lyapunov optimization,
FairFedCS [18] achieved better selection fairness. In this vein, we aim to study
how client selection can improve performance fairness in this work.

3 Fairness Compensation Federated Learning (FCFL)

In this section, we present the original fair FL method, FCFL, with problem
setting, proposed algorithms, and analysis.

3.1 Problem Setting

As shown in Fig. 1, general FL has the following three steps: (1) client selection,
(2) local training, and (3) weighted aggregation. Since the distribution of local
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datasets is different, the performance of the global model varies notably across
different clients. This phenomenon is referred to as performance fairness. To be
precise, the fairness of the global model can be defined as follows.

Definition 1. (Fairness of performance distribution [11]). A model θ1 is said
to be fairer than θ2 if the accuracy of θ1 on the N clients {a1, a2, ..., aN} is more
uniform than that of θ2 on the N clients.

In this work, we use the variance of the accuracy on all clients as a measure of
fairness, and the goal of our work is to reduce the variance while maintaining a
similar average accuracy of the global model. To achieve this goal, client selection
is a crucial aspect but is overlooked by most existing works. Intuitively, FL
selects clients to participate in training based on the amount of local data [8,28],
which leads to the global model being biased towards clients with more data. We
visualize this issue on the MNIST dataset and the CNN model in Fig. 2. Here,
the Dirichlet function is used to partition the dataset into 20 clients, where 2
clients are selected for each training round. Fig. 2(a) shows the distribution of
local data for each client, and it can be seen that the amount and classes of data
on each client differ significantly (such as clients 3, 10, 13), which simulates the
data distribution in real-world scenarios. Using the data amount-based client
selection method will reduce the selected times of these vulnerable clients in
training (as can be seen from the green bin in Fig. 2(b)). Random selection has
an equal chance of selecting each client, but it produces a poor performance of
the global model on vulnerable clients. Our unfairness-based selection prioritizes
the selection of vulnerable clients and finally can achieve performance fairness.
Taking client 3 as an example, it is rarely selected in the amount-based method
due to the limited local data, while our unfairness-selection method selects clients
based on unfairness in each round, with client 3 being selected significantly
more frequently. Note that unfairness-based selection selects clients based on
cumulative unfairness, so it may be possible for vulnerable clients to have fewer
choices than random ones. However, our proposed weight allocation based on
cumulative unfairness will give vulnerable clients more weight, thereby improving
the fairness of the scheme.

3.2 Overview of FCFL

To achieve the goal of fairness, we first investigate the reasons for performance
fairness in FL. As demonstrated above, due to the data heterogeneity, some
vulnerable clients cannot be selected fairly, such as client 3 in Fig. 2(b). To
alleviate unfairness, an intuitive approach is to compensate for these vulnerable
clients based on their unfairness level. To maintain the clients’ computation cost,
we focus on improving the selection ratio and assigning more aggregation weights
for vulnerable clients. Based on this idea, we propose FCFL which considers both
client selection and aggregation reweighting in the FL progress. The framework
of FCFL is depicted in Fig. 3. In each training round, all clients first upload the
local performance (i.e., the accuracy of the global model on local clients) to the
server, and then the server updates the accumulated unfairness queue to select
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(a) Data distribution of each client (b) The numbers of being selected

Fig. 2. The impact of data distribution on client selection methods.

clients and calculate aggregation weights. Next, the selected clients perform local
training and upload the local model and accuracy. Finally, the server completes
the aggregation and estimates the global performance for the next round of FL
training. Comprehensive explanations of this approach will be provided in the
subsequent sections.

3.3 Accumulated Unfairness Queues

In FL, performance fairness is evaluated by the accuracy differences of the global
model on different local clients. However, the global model is not available during
the training process until aggregation is performed. Therefore, to approximate
the unfairness of clients in training rounds, the unfairness level is measured by
the difference between the estimated global model accuracy and evaluated local
accuracy, which can be calculated as follows.

ufti =

{
Ãcc

t
−Accti, if Ãcc

t
> Accti

0, otherwise
(1)

where Accti represents the evaluated local accuracy of client i in round t and
Ãcc

t
=

∑m
i=1 ω

t
iÃcc

t

i is the estimated global model accuracy in round t, in which

Ãcc
t

i denotes the local training accuracy of client i in round t and m is the
number of selected clients. In this paper, we assume that the server does not
have access to validation data, which is realistic in the actual applications, so
the performance of the global model can only be obtained through estimation.
ufti is the unfairness level of the client i in round t, which is a cumulative value
that reflects whether the client i has been treated fairly or not so far and indicates
the priority of each client to be selected for training by the FCFL algorithm.
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Fig. 3. The framework of FCFL.

To track the cumulative unfairness of all clients during training, we introduce
a queue Qi(t) to store the unfairness value of each client i in round t as described
in the following formula. The intuition of this queue is to track the cumulative
unfairness of each participant, providing a basis for subsequent client selection
and weight allocation.

Qi(t) = max
{
Qi(t− 1) + αufti − ωt

i · 1[xi(t−1)=1], 0
}
, (2)

where xi(t−1) ∈ {0, 1} indicates whether client i has been selected in the (t−1)-
th round (1=yes, 0=no). 1[condition] is an indicator function, which equals 1 if
[condition] is true and 0 if not. α is a hyper-parameter that controls fairness.
The design rationale of Qi(t) are as follows to facilitate vulnerable clients:

– For clients with low-accuracy, Qi(t) is a cumulative value that reflects the
overall unfairness level in each round.

– For clients who are not selected, the indicator function 1[condition] is 0,
providing more unfairness increment by αufti.

– For clients with small weight, the cumulative unfairness value will have a
small penalty −ωt

i , resulting in a relatively high Qi(t).

Specifically, a client who has not been treated fairly (low-accuracy, not se-
lected, or small weight) will have a higher Qi(t), and our FCFL algorithm will
compensate these clients based on Qi(t) by client selection and aggregation
reweighting later.
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3.4 Client Selection and Aggregation Reweighting

Client selection is the first crucial step towards fair FL. After updating the
accumulated unfairness queue, the server can select the top-m clients with the
highest Qi(t) from the overall clients set N to perform local training. This step
guarantees that the vulnerable clients with higher cumulative unfairness level
will secure their chance to be selected by the FL system. After client selection
and local training, the other crucial step is to allocate more weight for these
clients to improve their contribution in aggregation. The adjusted aggregation
weight is calculated as follows:

ωt+1
i =


ni∑m
i=1 ni

, if Q1(t) = ... = Qm(t) = 0

Qi(t)∑m
i=1 Qi(t)

, otherwise

(3)

where ni is the data amount of client i and Qi(t) is the cumulative unfairness
value. When the cumulative unfairness of all selected clients is 0, the aggregation
weight is proportional to the local data amount, which is used to initialize weight
in the beginning. Otherwise, the higher the client’s unfairness value, the higher
the aggregation weight it gets, which ensures that vulnerable clients have a
greater influence on the aggregated global model.

Remark. It is important to note that selecting clients based solely on un-
fairness may lead to the global model being biased towards vulnerable clients
with rare datasets, which can be another form of unfairness and ultimately lead
to a decrease in the average accuracy of the global model across all clients. To
address this problem, we introduce a hyper-parameter r to balance the two kinds
of unfairness. This is achieved by using a random selection method to select a
portion of r clients and using our client selection method to select the remain-
ing. By doing so, our FCFL can proactively improve fairness while ensuring
global accuracy. The influence of the hyper-parameter r is evaluated as well in
section 4.4.

Algorithm 1 Fairness Compensation Federated Learning (FCFL)

Input: clients set N; communication rounds T ; local epochs E; learning rate η
Output: global model θT+1

Server executes:
initialize global model θ0
for each round t = 0, 1, 2..., T do

distribute global model θt to all clients
all client evaluate θt and upload local accuracy {Accti|i ∈N } to the server
if t == 0 then

initialize unfairness queues: Q1(0)=Q2(0)=...=QN (0)=0
select m clients to constitute subset St according to the selection method
initialize the aggregation weight wt+1

i = ni/
∑m

i=1 ni, i ∈ St

else
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calculate the unfairness of all clients via Eq. (1)
update the accumulated unfairness queue via Eq. (2)
select m clients to constitute subset St according to the selection method
calculate the aggregation weight via Eq. (3):

end if
for each client i ∈ St do

θt+1
i , Ãcc

t+1

i ← ClientUpdate(i, θt)
end for
update global model parameters:

θt+1 =
∑m

i=1 ω
t+1
i θt+1

i

estimate global performance:

Ãcc
t+1

=
∑m

i=1 ω
t+1
i Ãcc

t+1

i

end for
ClientUpdate(i, θt): // Run on client i

client i ∈ St updates θt for E epochs with step size η to obtain θt+1
i

client i ∈ St evaluates θt+1
i on local datasets to obtain Ãcc

t+1

i

client sends θt+1
i and Ãcc

t+1

i to the server

The process of the proposed FCFL is illustrated in Algorithm 1. In each
round, our FCFL selects a set of clients St to participate in the training through
an additional communication round and determines the aggregation weights
based on the unfairness queues. For each client, multiple training steps are
performed, and then the updated parameters and local training accuracy are
uploaded to the server. Finally, the server aggregates the parameters and es-
timates the performance of the global model. Note that in 0-th round, since
{Qi(t) = 0|i ∈ N} is initialized fairly, selecting the top-m clients becomes a ran-
dom selection method, and the aggregation weight is proportional to the amount
of data.

Remark. The FedAvg algorithm can be seen as a special case of our FCFL.
When α in Eq. (2) is 0, the cumulative unfairness value of all clients Qi(t) is 0
in every round. Hence, client selection is random and the aggregation weight is
proportional to the amount of data. As α increases, the unfairness ufti imposes
more influence in Qi(t), which will have a higher chance of being selected and
receiving higher aggregation weights, thus improving the fairness of FL.

3.5 Analysis of Communication and Computation Overhead

The major bottlenecks of FL are the communication cost between server and
edge devices [8] as well as the local client computation power. Compared with
the FedAvg algorithm, our FCFL does not introduce too much communication
overhead as analyzed below. In Algorithm 1, although we have additional com-
munication from clients, the client only needs to upload the local accuracy Accti
once, which costs 8 more bits per round. This communication is necessary to
calculate the unfairness queue and select clients to participate in training. After



A Fairness Compensation-based FL Scheme with Accumulated Queues 11

local training on the client, each client i ∈ St sends θt+1
i and Ãcc

t+1

i Ãcc
t+1

i to the

server, where the accuracy Ãcc
t+1

k is an extra cost for communication but with
small size. Overall, our FCFL only involves a few more bits of communication
cost per round.

We then analyze the computation overhead of FCFL. On the client side, client
devices require additional accuracy calculations (evaluating the performance of
the global model on local datasets), and the remaining calculations are the same
as in FedAvg. To save local computation cost, instead of evaluating the Ãcc

t+1

k by
going through the entire local dataset, we can use mini-batch samples from the
local dataset to obtain an estimated accuracy. On the server side, the calculation
of unfairness, cumulative unfairness, aggregated weights, and global performance
estimation can be completed through simple arithmetic operations within O(N).
Considering that the server typically has high computing power, such computa-
tional cost is negligible and will not impact the bottleneck to FCFL. Empirical
results of FCFL’s efficiency are presented in section 4.3.

4 Experiments

In this section, the performance of FCFL is compared with other methods for dif-
ferent perspectives, including fairness 4.2, efficiency 4.3, and hyper-parameter 4.4.
In addition, we conduct ablation experiments in section 4.5 to verify the impact
of our client selection and reweighting methods.

4.1 Experimental Settings

All experiments are conducted on three public datasets: MNIST and CIFAR-10
with 100 local clients, and Shakespeare with 31 local clients. We only consider
non-IID scenarios since heterogeneous non-IID data distribution is the reason
for performance fairness. To simulate this scenario, we design three settings to
allocate data to the clients. (1) We sort all data samples based on labels and then
split them into 200 shards, where each client randomly picks 2 shards without
replacement. (2) We utilize the Dirichlet function to set different levels of non-
IID local clients [23]. (3) In The Complete Works of William Shakespeare [15],
each speaking role in each play is treated as a device, We subsample 31 speaking
roles following the setting in [11]. We randomly divide the data for each local
client into 8 : 2 for training and testing, respectively.

Training. Three models, MLP, CNN, and RNN, are adopted for the ex-
periments. For MNIST, we use a CNN which contains two convolutions and
maximum pooling. We use an MLP which contains a hidden layer on CIFAR-10.
For Shakespeare, we use an RNN model which contains an embedding layer and
an LSTM layer. All the code is implemented in PyTorch to simulate a federated
network with 1 server and several clients, where 10% of clients are selected for
training in each round. The local batch size is 64, the local epoch is 1, the server’s
momentum factor is 0.5, and the number of communication rounds for MNIST
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and CIFAR-10 is 2000 and for Shakespeare is 500. Note that a communication
round refers to the process of completing a model update through interaction
between the server and the clients.

Baselines. We compare FCFL with the classic method FedAvg [15] and
various state-of-the-art fairness methods in FL, including q-FedAvg [11], FedFa
[8], and GIFAIR [28]. Based on the code provided by their authors, we directly
rewrite the code for comparison. The presented results are averaged from 5 runs
with different random seeds.

4.2 Fairness of FCFL

We compare the proposed FCFL with four FL algorithms, FedAvg, q-FedAvg,
FedFa, and GIFAIR to verify the fairness of our method. The value of q in
q-FedAvg is set to {0.1, 0.2, 0.5, 1.0, 2.0, 5.0}, the value of accuracy weight and
frequency weight in FedFa is set to {(0.4, 0.6), (0.5, 0.5), (0.6, 0.4)}, and the pa-
rameter λ in GIFAIR is set to {0.3, 0.5, 0.7}. We take the best performance of
each method for the comparison. The derived variance and accuracy are dis-
played in Table 2, from which we can see that our FCFL method produces
the lowest variance of 11.03 on MNIST, 114.59 on CIFAR-10, and 67.48 on
Shakespeare. Moreover, taking the CIFAR-10 dataset as an example, compared
with q-FedAvg(q=2.0), FedFa, and GIFAIR, our FCFL reduces the variance by
23.4%, 30.4%, 27.7%, respectively. Similar variance reductions can also be
seen on the MNIST and Shakespeare datasets. Since variance is an important
metric of fairness, it indicates that our FCFL can achieve the fairest performance
among all baselines. In addition, the accuracy of the worst 10% client of FCFL is
significantly higher than other experiments. In the CIFAR-10 dataset, compared
with the second-best method q-FedAvg (q=2.0) in baselines, the worst 10% per-
formance is increased from 24.98 to 28.03. Similarly, in the MNIST dataset,
the worst 10% performance increased from 88.63 to 89.17, and in Shakespeare,
the worst 10% performance increased from 37.92 to 38.55. This confirms our
FCFL has shown great improvement in protecting unfairly treated clients. As for
the global average accuracy, our FCFL can reach 96.06%, 46.12%, and 50.55%
in MNIST, CIFAR-10, and Shakespeare respectively, which is very competitive
(around 1% difference) to other baselines. In the best 10% accuracy, our FCFL
method is a bit lower than some baselines since we emphasize more focus on
vulnerable clients and deliver much better fairness.

To summarize, the FCFL method can achieve better fairness in FL while
maintaining competitive average accuracy in most cases, which will attract more
minority clients to participate in FL, thereby expanding FL applications.

4.3 Efficiency of FCFL

We also record the trend of loss value and the test accuracy of the global model
for each round in the MNIST and CIFAR-10 datasets and plot them in Fig. 4. As
depicted in Fig. 4(a), the loss of proposed FCFL reduces fast as the communica-
tion round increases, which affirms that FCFL can converge as fast as FedAvg,
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Table 2. Statistics of the test accuracy distribution on different datasets.

Dataset Method Accuracy Best 10% Worst 10% Variance

MNIST

FedAvg 95.96 100.00 87.47 15.06
q-FedAvg|q=0.2 96.09 100.00 88.40 12.58

FedFa|α=0.6,β=0.4 96.23 100.00 88.37 12.61
GIFAIR|λ=0.5 96.12 100.00 88.63 12.72

FCFL|α=0.3,r=0.4 96.06 100.00 89.17 11.03

CIFAR-10

FedAvg 46.35 68.67 20.16 178.93
q-FedAvg|q=2.0 47.14 66.81 24.98 149.50

FedFa|α=0.6,β=0.4 46.64 68.10 23.19 164.68
GIFAIR|λ=0.5 46.61 67.02 23.18 158.36

FCFL|α=0.3,r=0.6 46.12 65.39 28.03 114.59

Shakespeare

FedAvg 49.16 70.65 35.34 89.87
q-FedAvg|q=2.0 50.24 69.77 37.92 75.99

FedFa|α=0.5,β=0.5 49.03 69.06 36.23 79.54
GIFAIR|λ=0.3 50.01 68.50 36.24 78.25

FCFL|α=0.1,r=0.6 50.55 68.74 38.55 67.48

Table 3. The running time of one communication round.

Method

Time(s) Setting
MNIST(MLP) MNIST(CNN) CIFAR-10(MLP) CIFAR-10(CNN)

FedAvg 0.87 1.91 0.89 1.84
q-FedAvg 0.95 1.99 0.96 1.90

FedFa 1.03 2.01 0.96 1.91
GIFAIR 0.88 1.90 0.88 1.85
FCFL 0.94 2.01 0.96 1.95

FedFa, and GIFAIR, and is significantly faster than q-FedAvg. In Fig. 4(b), the
test accuracy of FCFL increases rapidly and reaches a convergence value after
1000 rounds. Similar results can be observed from the CIFAR-10 dataset, which
states that our FCFL method has a reasonable convergence speed.

To further validate the efficiency of our FCFL, we compare the time cost for
one communication round in different datasets and models. The statistics are
presented in Table 3. From Table 3, it can be seen that FCFL does not introduce
too much time cost. In some cases, it can achieve the same time efficiency as
FedFa and q-FedAvg. Therefore, although FCFL adds one more communication,
it does not consume too much time and thus can maintain time efficiency while
improving fairness.

4.4 Effect of Hyper-parameter r

To investigate the impact of the client selection ratio r on our FCFL method, the
average accuracy and variance are plotted in Fig. 5 for both datasets. The range
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(a) MNIST training loss (b) MNIST test accuracy

(c) CIFAR-10 training loss (d) CIFAR-10 test accuracy

Fig. 4. The training loss (left) and test accuracy (right) of FCFL.

of r is [0, 1], representing the ratio of clients selected by the random selection
method. Theoretically, increasing r will lead to an increase in accuracy, since
greater randomness allows the global model to extract data from more clients;
More randomly selected clients cause the system to ignore vulnerable clients, in-
creasing variance among all clients. Due to the simplicity of the MNIST dataset,
the performance distribution for each client is uniform, and the average precision
and variance do not show significant changes with the parameter r in Fig. 5(a).
In contrast, the analysis is reflected in Fig. 5(b) more obviously, where the aver-
age accuracy and variance increase along with r, which confirms that enlarging
the random ratio r of selected clients will derive higher accuracy and variance
of FL system. In our experiments, the parameter r is tuned by grid search, and
r = 0.6 is selected as the best value that can reach a perfect trade-off between
accuracy and variance (i.e., fairness).

4.5 Ablation Experiments
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(a) Accuracy and variance on MNIST (b) Accuracy and variance on CIFAR-10

Fig. 5. Analysis of the parameter r on (a) MNIST, and (b) CIFAR-10.

Table 4. Ablation studies of FCFL on CIFAR-10.

Method Accuracy Best 10% Worst 10% Variance
FCFL 46.12 65.39 28.03 114.59

FCFL|RS 46.06 65.60 22.91 151.31
FCFL|DAR 43.56 61.00 26.57 96.31

A series of ablation experiments are conducted on CIFAR-10 to validate our
proposed techniques. We compare FCFL with its two variants: (i) FCFL|RS,
replacing unfairness-based selection with random selection; and (ii) FCFL|DAR,
replacing unfairness-based reweighting with data amount reweighting. The com-
parison results are presented in Table 4, which demonstrates that the complete
FCFL can effectively balance fairness and performance compared to the two
variants. Specifically, when comparing FCFL and FCFL|RS, it can be seen that
unfairness-based selection can significantly improve the worst 10% performance,
and reduce variance from 151.31 to 114.59. This improvement indicates that
unfairness-based client selection can solve the unfairness issue effectively. Com-
pared with FCFL|DAR, although the variance is reduced much by FCFL|DAR,
it is achieved by sacrificing global accuracy and the best 10% accuracy, which
states that our unfairness-based reweighting can improve accuracy effectively.
The results of the ablation study indicate that the proposed FCFL takes advan-
tage of both client selection and reweighting strategy, providing a well-justified
fairness and performance in FL.

5 Conclusion

The performance fairness problem of FL is investigated in this work, where we
propose FCFL, a fairness compensation-based FL algorithm to improve fairness
on vulnerable clients. The proposed FCFL considers both client selection and
aggregation reweighting to compensate for unfairly treated clients by adopting
accumulated unfairness queues. Through intensive experiments and comparison
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with the existing baselines, the proposed FCFL is demonstrated to improve fair-
ness by 30.4% with high efficiency. In future work, we will extend the study
on how to estimate unfairness accurately with approximate global performance
and how to select hyper-parameters adaptively to improve overall performance.
Furthermore, combining this approach with selection fairness would be an inter-
esting idea in our future investigation.
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